前言
单调栈分为单调递增栈和单调递减栈,二者在定义上有所区别,即一个是维护栈使其保持单调递增,另一个是维护栈使其保持单调递减。单调递减栈用于求最近的大元素, 而单调递增栈用于求最近的小元素。
求右边第一个大元素的问题可以转化为逆序然后求左边第一个大元素的问题;求左边时同理;尽管二者相同,但是在时间复杂度上有一些差距, 根据题题目,可以适当选择,当然也可以用手写栈来减少时间复杂度上的差距。
单调栈适用于寻找第一个大于当前位置的元素的位置,或者第一个小于当前位置的元素的位置。常见题型有,不规则矩形的最大面积, 低看高问题,高看低问题等;
实例分析
P5788 【模板】单调栈
手写栈正序(正序用STL会超时)
#include <iostream>
#include <stack>
using namespace std;
const int maxn = 3e6 + 5;
int top;
int n, a[maxn], f[maxn], s[maxn];
int main () {
cin >> n;
for (int i = 1; i <= n; i++)
cin >> a[i];
for (int i = 1; i <= n; i++) {
while (top && a[s[top]]< a[i]) f[s[top--]]= i;
s[++top] = i;
}
for (int i = 1; i <= n; i++)
cout << f[i] << " ";
return 0;
}
逆序STL
#include<cstdio>
#include<stack>
using namespace std;
int n,a[3000005],f[3000005];//a是需要判断的数组(即输入的数组),f是存储答案的数组
stack<int>s;//模拟用的栈
int main()
{
scanf("%d",&n);
for(int i=1;i<=n;i++) scanf("%d",&a[i]);
for(int i=n;i>=1;i--)
{
while(!s.empty()&&a[s.top()]<=a[i]) s.pop();//弹出栈顶比当前数小的
f[i]=s.empty()?0:s.top();//存储答案,由于没有比她大的要输出0,所以加了个三目运算
s.push(i);//压入当前元素
}
for(int i=1;i<=n;i++) printf("%d ",f[i]);//输出
return 0;
}