数学建模入门笔记(3) 插值与拟合

插值与拟合

插值和拟合的区别:拟合不要求过每一个已知点,而插值要求过每一个已知点,因而插值可以看作过每一个点的拟合。

插值适用于补全缺失值,因为使用一般拟合就有可能使已知值偏移,不符合需求。据说PS用某种样条插值,放大的时候最大程度的保留连续性,因此显得不是那么模糊.

数学建模笔记1.3——插值 - Infty的文章 - 知乎
https://zhuanlan.zhihu.com/p/390028714

1 插值

1.1 分段线性插值

从几何上解释就是用直线把已知点相连形成折线

数学表示

分段线性插值函数记为 I n ( x ) I_n(x) In(x)
I n ( x ) = ∑ i = 0 n y i l i ( x ) I_n(x)=\sum_{i=0}^n y_i l_i(x) In(x)=i=0nyili(x)
其中基函数记为 l i ( x ) l_i(x) li(x)
l i ( x ) = { x − x i − 1 x i − x i − 1 , x ∈ [ x i − 1 , x i ] , i ≠ 0 , x − x i + 1 x i − x i + 1 , x ∈ [ x i , x i + 1 ] , i ≠ n , 0 ,  其他  l_i(x)=\left\{\begin{array}{l} \frac{x-x_{i-1}}{x_i-x_{i-1}}, x \in\left[x_{i-1}, x_i\right], i \neq 0, \\ \frac{x-x_{i+1}}{x_i-x_{i+1}}, x \in\left[x_i, x_{i+1}\right], i \neq n, \\ 0, \text { 其他 } \end{array}\right. li(x)= xixi1xxi1,x[xi1,xi],i=0,xixi+1xxi+1,x[xi,xi+1],i=n,0, 其他 
I n ( x ) I_n(x) In(x) 有良好的收敛性, 即对于 x ∈ [ a , b ] x \in[a, b] x[a,b], 有
lim ⁡ n → ∞ I n ( x ) = f ( x ) \lim _{n \rightarrow \infty} I_n(x)=f(x) nlimIn(x)=f(x)

特点

计算量小,用 I n ( x ) I_n(x) In(x) 计算 x x x 点的插值时,只用到 x x x 左右的两个节点, 计算量与节点个数 n n n 无关。但 n n n 越大插值误差越小。

不够光滑。

1.2 拉格朗日插值

数学表示

拉格朗日 (Lagrange) 插值的基函数为
l i ( x ) = ( x − x 0 ) ⋯ ( x − x i − 1 ) ( x − x i + 1 ) ⋯ ( x − x n ) ( x i − x 0 ) ⋯ ( x i − x i − 1 ) ( x i − x i + 1 ) ⋯ ( x i − x n ) = ∏ j = 0 j ≠ i n x − x j x i − x j , i = 0 , 1 , ⋯   , n \begin{aligned} l_i(x) & =\frac{\left(x-x_0\right) \cdots\left(x-x_{i-1}\right)\left(x-x_{i+1}\right) \cdots\left(x-x_n\right)}{\left(x_i-x_0\right) \cdots\left(x_i-x_{i-1}\right)\left(x_i-x_{i+1}\right) \cdots\left(x_i-x_n\right)} \\ & =\prod_{\substack{j=0 \\ j \neq i}}^n \frac{x-x_j}{x_i-x_j}, i=0,1, \cdots, n \end{aligned} li(x)=(xix0)(xixi1)(xixi+1)(xixn)(xx0)(xxi1)(xxi+1)(xxn)=j=0j=inxixjxxj,i=0,1,,n
l i ( x ) l_i(x) li(x) n n n 次多项式, 满足
l i ( x j ) = { 0 , j ≠ i , 1 , j = i 。 l_i\left(x_j\right)=\left\{\begin{array}{l} 0, j \neq i, \\ 1, j=i 。 \end{array}\right. li(xj)={0,j=i,1,j=i

拉格朗日插值函数
L n ( x ) = ∑ i = 0 n y i l i ( x ) = ∑ i = 0 n y i ( ∏ j = 0 j ≠ i n x − x j x i − x j ) L_n(x)=\sum_{i=0}^n y_i l_i(x)=\sum_{i=0}^n y_i\left(\prod_{\substack{j=0 \\ j \neq i}}^n \frac{x-x_j}{x_i-x_j}\right) Ln(x)=i=0nyili(x)=i=0nyi j=0j=inxixjxxj

特点

( 1 ) (1) (1) 增加或改变已知节点则需要重新计算生成拉格朗日插值函数,计算量大。

( 2 ) (2) (2) 会出现龙格现象(Runge):
指的是对于某些函数,使用均匀节点构造高次多项式差值时,在插值区间的边缘的误差可能很大的现象。它是由Runge在研究多项式差值的误差时发现的,这一发现很重要,因为它表明,并不是插值多项式的阶数越高,效果就会越好。

龙格现象(Runge Phenomenon) - sslchi的文章 - 知乎
https://zhuanlan.zhihu.com/p/138747068

1.3 牛顿插值

数学表示
差商

自变量之差与因变量之差之比叫差商
定义: 函数 y = f ( x ) y=f(x) y=f(x) 在区间 [ x i , x i + 1 ] \left[x_i, x_{i+1}\right] [xi,xi+1] 上的平均变化率
f [ x i , x i + 1 ] = f ( x i + 1 ) − f ( x i ) x i + 1 − x i f\left[x_i, x_{i+1}\right]=\frac{f\left(x_{i+1}\right)-f\left(x_i\right)}{x_{i+1}-x_i} f[xi,xi+1]=xi+1xif(xi+1)f(xi)

称为 f ( x ) f(x) f(x) 关于 x i , x i + 1 x_i, x_{i+1} xi,xi+1 的一阶差商,并记为 f [ x i , x i + 1 ] f\left[x_i, x_{i+1}\right] f[xi,xi+1]
二阶差商:
f [ x i , x i + 1 , x i + 2 ] = f [ x i + 1 , x i + 2 ] − f [ x i , x i + 1 ] x i + 2 − x i f\left[x_i, x_{i+1}, x_{i+2}\right]=\frac{f\left[x_{i+1}, x_{i+2}\right]-f\left[x_i, x_{i+1}\right]}{x_{i+2}-x_i} f[xi,xi+1,xi+2]=xi+2xif[xi+1,xi+2]f[xi,xi+1]
m \mathrm{m} m 阶差商:
f [ x 0 , x 1 , ⋯   , x m ] = f [ x 1 , x 2 , ⋯   , x m ] − f [ x 0 , x 1 , ⋯   , x m − 1 ] x m − x 0 f\left[x_0, x_1, \cdots, x_m\right]=\frac{f\left[x_1, x_2, \cdots, x_m\right]-f\left[x_0, x_1, \cdots, x_{m-1}\right]}{x_m-x_0} f[x0,x1,,xm]=xmx0f[x1,x2,,xm]f[x0,x1,,xm1]

牛顿插值公式

a 0 = f ( x 0 ) a 1 = f [ x 0 , x 1 ] a 2 = f [ x 0 , x 1 , x 2 ] \begin{gathered} a_0=f\left(x_0\right) \\ a_1=f\left[x_0, x_1\right] \\ a_2=f\left[x_0, x_1, x_2\right] \end{gathered} a0=f(x0)a1=f[x0,x1]a2=f[x0,x1,x2]

其中一般式:
a k = f [ x 0 , x 1 , ⋯   , x k ] ( k = 0 , 1 , ⋯   , n ) a_k=f\left[x_0, x_1, \cdots, x_k\right] \quad(k=0,1, \cdots, n) ak=f[x0,x1,,xk](k=0,1,,n)

将求得系数代入多项式中即可得到n次牛顿插值公式
N n ( x ) = f ( x 0 ) + f [ x 0 , x 1 ] ( x − x 0 ) + ⋯ + f [ x 0 , x 1 , ⋯   , x n ] ( x − x 0 ) ( x − x 1 ) ⋯ ( x − x n ) N_n(x)=f\left(x_0\right)+f\left[x_0, x_1\right]\left(x-x_0\right)+\cdots+f\left[x_0, x_1, \cdots, x_n\right]\left(x-x_0\right)\left(x-x_1\right) \cdots\left(x-x_n\right) Nn(x)=f(x0)+f[x0,x1](xx0)++f[x0,x1,,xn](xx0)(xx1)(xxn)

其余项为
R n ( x ) = f [ x 0 , x 1 , ⋯   , x n , x ] ( x − x 0 ) ( x − x 1 ) ⋯ ( x − x n ) = f [ x 0 , x 1 , ⋯   , x n , x ] ∏ i = 0 n ( x − x i ) = f ( n + 1 ) ( ξ ) ( n + 1 ) ! ∏ i = 0 n ( x − x i ) f [ x 0 , x 1 , ⋯   , x n ] = f ( n + 1 ) ( ξ ) ( n + 1 ) ! \begin{gathered} R_n(x)=f\left[x_0, x_1, \cdots, x_n, x\right]\left(x-x_0\right)\left(x-x_1\right) \cdots\left(x-x_n\right) \\ =f\left[x_0, x_1, \cdots, x_n, x\right] \prod_{i=0}^n\left(x-x_i\right)=\frac{f^{(n+1)}(\xi)}{(n+1) !} \prod_{i=0}^n\left(x-x_i\right) \\ f\left[x_0, x_1, \cdots, x_n\right]=\frac{f^{(n+1)}(\xi)}{(n+1) !} \end{gathered} Rn(x)=f[x0,x1,,xn,x](xx0)(xx1)(xxn)=f[x0,x1,,xn,x]i=0n(xxi)=(n+1)!f(n+1)(ξ)i=0n(xxi)f[x0,x1,,xn]=(n+1)!f(n+1)(ξ)

特点

( 1 ) (1) (1) 添加新节点计算量小

( 2 ) (2) (2) 仍会出现龙格现象

http://t.csdnimg.cn/ksi89

牛顿插值的几何解释是怎么样的? - 马同学的回答 - 知乎
https://www.zhihu.com/question/22320408/answer/141973314

1.4 三次样条插值

样条插值

即取插值函数为样条函数, 称为样条插值。例如分段线性插值是一次样条插值。

三次样条插值的数学表示
定义

即已知函数 y = f ( x ) y=f(x) y=f(x) 在区间 [ a , b ] [a, b] [a,b] 上的 n + 1 n+1 n+1 个节点
a = x 0 < x 1 < ⋯ < x n − 1 < x n = b a=x_0<x_1<\cdots<x_{n-1}<x_n=b a=x0<x1<<xn1<xn=b
上的值 y i = f ( x i ) ( i = 0 , 1 , ⋯   , n ) y_i=f\left(x_i\right)(i=0,1, \cdots, n) yi=f(xi)(i=0,1,,n), 求插值函数 S ( x ) S(x) S(x), 使得
( 1 ) (1) (1) S ( x i ) = y i ( i = 0 , 1 , ⋯   , n ) S\left(x_i\right)=y_i(i=0,1, \cdots, n) S(xi)=yi(i=0,1,,n)
( 2 ) (2) (2) 在每个小区间 [ x i , x i + 1 ] ( i = 0 , 1 , ⋯   , n − 1 ) \left[x_i, x_{i+1}\right](i=0,1, \cdots, n-1) [xi,xi+1](i=0,1,,n1) S ( x ) S(x) S(x) 是三次多项式, 记为 S i ( x ) S_i(x) Si(x)
( 3 ) (3) (3) S ( x ) S(x) S(x) [ a , b ] [a, b] [a,b] 上二阶连续可微。

函数 S ( x ) S(x) S(x) 称为 f ( x ) f(x) f(x) 的三次样条插值函数。

固定条件

由条件(2), 不妨记
S ( x ) = { S i ( x ) , x ∈ [ x i , x i + 1 ] , i = 0 , 1 , ⋯   , n − 1 } , S i ( x ) = a i x 3 + b i x 2 + c i x + d i , \begin{aligned} & S(x)=\left\{S_i(x), x \in\left[x_i, x_{i+1}\right], i=0,1, \cdots, n-1\right\}, \\ & S_i(x)=a_i x^3+b_i x^2+c_i x+d_i, \end{aligned} S(x)={Si(x),x[xi,xi+1],i=0,1,,n1},Si(x)=aix3+bix2+cix+di,

式中: a i , b i , c i , d i a_i, b_i, c_i, d_i ai,bi,ci,di 为待定系数, 共 4 n 4 n 4n 个。
由条件 (3), 有
{ S i ( x i + 1 ) = S i + 1 ( x i + 1 ) , S i ′ ( x i + 1 ) = S i + 1 ′ ( x i + 1 ) , i = 0 , 1 , ⋯   , n − 2 S ′ ′ i ( x i + 1 ) = S ′ ′ i + 1 ( x i + 1 ) , \left\{\begin{array}{l} S_i\left(x_{i+1}\right)=S_{i+1}\left(x_{i+1}\right), \\ S_i^{\prime}\left(x_{i+1}\right)=S_{i+1}^{\prime}\left(x_{i+1}\right), i=0,1, \cdots, n-2 \\ S^{\prime \prime}{ }_i\left(x_{i+1}\right)=S^{\prime \prime}{ }_{i+1}\left(x_{i+1}\right), \end{array}\right. Si(xi+1)=Si+1(xi+1),Si(xi+1)=Si+1(xi+1),i=0,1,,n2S′′i(xi+1)=S′′i+1(xi+1),

容易看出, 式 (5.1) 和式 (5.2) 共含有 4 n − 2 4 n-2 4n2 个方程, 为确定 S ( x ) S(x) S(x) 4 n 4 n 4n 个待定参数, 尚需再给出两个边界条件。

边界条件

常用的三次样条函数的边界条件有 3 种类型:
( 1 ) (1) (1) S ′ ( a ) = y 0 ′ , S ′ ( b ) = y n ′ S^{\prime}(a)=y_0^{\prime}, S^{\prime}(b)=y_n^{\prime} S(a)=y0,S(b)=yn 。 由这种边界条件建立的样条插值函数称为 f ( x ) f(x) f(x) 的完备三次样条插值函数。
特别地, y ′ 0 = y n ′ = 0 y^{\prime}{ }_0=y_n^{\prime}=0 y0=yn=0 时, 样条曲线在端点处呈水平状态。
如果 f ′ ( x ) f^{\prime}(x) f(x) 不知道, 我们可以要求 S ′ ( x ) S^{\prime}(x) S(x) f ′ ( x ) f^{\prime}(x) f(x) 在端点处近似相等。这时以 x 0 , x 1 x_0, x_1 x0,x1, x 2 , x 3 x_2, x_3 x2,x3 为节点作一个三次 Newton 插值多项式 N a ( x ) N_a(x) Na(x), 以 x n , x n − 1 , x n − 2 , x n − 3 x_n, x_{n-1}, x_{n-2}, x_{n-3} xn,xn1,xn2,xn3 作一个三次 Newton 插值多项式 N b ( x ) N_b(x) Nb(x),要求
S ′ ( a ) = N a ′ ( a ) , S ′ ( b ) = N b ′ ( b ) 。 S^{\prime}(a)=N_a^{\prime}(a), S^{\prime}(b)=N_b^{\prime}(b) 。 S(a)=Na(a),S(b)=Nb(b)

由这种边界条件建立的三次样条称为 f ( x ) f(x) f(x) 的 Lagrange 三次样条插值函数。
( 2 ) (2) (2) S ′ ′ ( a ) = y 0 ′ ′ , S ′ ′ ( b ) = y n ′ ′ S^{\prime \prime}(a)=y_0^{\prime \prime}, S^{\prime \prime}(b)=y_n^{\prime \prime} S′′(a)=y0′′,S′′(b)=yn′′ 。特别地, y ′ ′ 0 = y n ′ ′ = 0 y^{\prime \prime}{ }_0=y_n^{\prime \prime}=0 y′′0=yn′′=0 时, 称为自然边界条件。
( 3 ) (3) (3) S ′ ( a + 0 ) = S ′ ( b − 0 ) , S ′ ′ ( a + 0 ) = S ′ ′ ( b − 0 ) S^{\prime}(a+0)=S^{\prime}(b-0), S^{\prime \prime}(a+0)=S^{\prime \prime}(b-0) S(a+0)=S(b0),S′′(a+0)=S′′(b0), 此条件称为周期条件。

2 拟合

曲线拟合问题的提法是, 已知一组 (二维) 数据, 即平面上的 n n n 个点 ( x i , y i ) , i = 1 \left(x_i, y_i\right), i=1 (xi,yi),i=1, 2 , ⋯   , n , x i 2, \cdots, n, x_i 2,,n,xi 互不相同, 寻求一个函数 (曲线) y = f ( x ) y=f(x) y=f(x), 使 f ( x ) f(x) f(x) 在某种准则下与所有数据点最为接近,即曲线拟合得最好。

2.1 线性最小二乘法

线性最小二乘法是解决曲线拟合最常用的方法。

基本思路


f ( x ) = a 1 r 1 ( x ) + a 2 r 2 ( x ) + ⋯ + a m r m ( x ) f(x)=a_1 r_1(x)+a_2 r_2(x)+\cdots+a_m r_m(x) f(x)=a1r1(x)+a2r2(x)++amrm(x)

其中:

r k ( x ) r_k(x) rk(x) 为事先选定的一组线性无关的函数; a k a_k ak 为待定系数 ( k = 1 , 2 , ⋯   , m ; m < n ) (k=1,2, \cdots, m ; m<n) (k=1,2,,m;m<n)
拟合准则是使 y i ( i = 1 , 2 , ⋯   , n ) y_i(i=1,2, \cdots, n) yi(i=1,2,,n) f ( x i ) f\left(x_i\right) f(xi) 的距离 δ i \delta_i δi 的平方和最小, 称为最小二乘准则。

步骤
1. 函数 r k ( x ) r_k(x) rk(x) 的选取

面对一组数据 ( x i , y i ) , i = 1 , 2 , ⋯   , n \left(x_i, y_i\right), i=1,2, \cdots, n (xi,yi),i=1,2,,n, 用线性最小二乘法作曲线拟合时, 首要的也是关键的一步是恰当地选取 r 1 ( x ) , ⋯   , r m ( x ) r_1(x), \cdots, r_m(x) r1(x),,rm(x)

如果通过机理分析, 能够知道 y y y x x x 之间的函数关系, 则 r 1 ( x ) , ⋯   , r m ( x ) r_1(x), \cdots, r_m(x) r1(x),,rm(x) 容易确定。

若无法知道 y y y x x x 之间的关系, 通常可以将数据 ( x i , y i ) , i = 1 , 2 , ⋯   , n \left(x_i, y_i\right), i=1,2, \cdots, n (xi,yi),i=1,2,,n 作图, 直观地判断应该用什么样的曲线去作拟合。

常用的曲线有:
(1) 直线 y = a 1 x + a 2 y=a_1 x+a_2 y=a1x+a2
(2) 多项式 y = a 1 x m + ⋯ + a m x + a m + 1 y=a_1 x^m+\cdots+a_m x+a_{m+1} y=a1xm++amx+am+1 (一般 m = 2 , 3 m=2, 3 m=2,3, 不宜太高 ) 。 ) 。 )
(3) 双曲线 (一支) y = a 1 x + a 2 y=\frac{a_1}{x}+a_2 y=xa1+a2
(4) 指数曲线 y = a 1 e a 2 x y=a_1 \mathrm{e}^{a_2 x} y=a1ea2x
对于指数曲线, 拟合前需作变量代换, 化为对 a 1 , a 2 a_1, a_2 a1,a2 的线性函数。

已知一组数据, 用什么样的曲线拟合最好, 可以在直观判断的基础上, 选几种曲线分别拟合,然后比较,看哪条曲线的最小二乘指标 J J J 最小。

2. 系数 a k a_k ak 的确定


J ( a 1 , ⋯   , a m ) = ∥ R A − Y ∥ 2 2 = ∑ i = 1 n δ i 2 = ∑ i = 1 n [ f ( x i ) − y i ] 2 , J\left(a_1, \cdots, a_m\right)=\|\boldsymbol{R A}-\boldsymbol{Y}\|_{2}^2=\sum_{i=1}^n \delta_i^2=\sum_{i=1}^n\left[f\left(x_i\right)-y_i\right]^2, J(a1,,am)=RAY22=i=1nδi2=i=1n[f(xi)yi]2,

为求 a 1 , ⋯   , a m a_1, \cdots, a_m a1,,am 使 J J J 达到最小, 只需利用极值的必要条件 ∂ J ∂ a j = 0 ( j = 1 , ⋯   , m ) \frac{\partial J}{\partial a_j}=0(j=1, \cdots, m) ajJ=0(j=1,,m), 得到关于 a 1 , ⋯   , a m a_1, \cdots, a_m a1,,am 的线性方程组
∑ i = 1 n r j ( x i ) [ ∑ k = 1 m a k r k ( x i ) − y i ] = 0 , j = 1 , ⋯   , m , \sum_{i=1}^n r_j\left(x_i\right)\left[\sum_{k=1}^m a_k r_k\left(x_i\right)-y_i\right]=0, j=1, \cdots, m, i=1nrj(xi)[k=1makrk(xi)yi]=0,j=1,,m,


∑ k = 1 m a k [ ∑ i = 1 n r j ( x i ) r k ( x i ) ] = ∑ i = 1 n r j ( x i ) y i , j = 1 , ⋯   , m , \sum_{k=1}^m a_k\left[\sum_{i=1}^n r_j\left(x_i\right) r_k\left(x_i\right)\right]=\sum_{i=1}^n r_j\left(x_i\right) y_i, j=1, \cdots, m, k=1mak[i=1nrj(xi)rk(xi)]=i=1nrj(xi)yi,j=1,,m,


R = [ r 1 ( x 1 ) ⋯ r m ( x 1 ) ⋮ ⋮ ⋮ r 1 ( x n ) ⋯ r m ( x n ) ] n × m , A = [ a 1 , ⋯   , a m ] T , Y = [ y 1 , ⋯   , y n ] T , \begin{aligned} \boldsymbol{R} & =\left[\begin{array}{ccc} r_1\left(x_1\right) & \cdots & r_m\left(x_1\right) \\ \vdots & \vdots & \vdots \\ r_1\left(x_n\right) & \cdots & r_m\left(x_n\right) \end{array}\right]_{n \times m}, \\ \boldsymbol{A} & =\left[a_1, \cdots, a_m\right]^{\mathrm{T}}, \boldsymbol{Y}=\left[y_1, \cdots, y_n\right]^{\mathrm{T}}, \end{aligned} RA= r1(x1)r1(xn)rm(x1)rm(xn) n×m,=[a1,,am]T,Y=[y1,,yn]T,

方程组式 (5.5) 可表为
R T R A = R T Y \boldsymbol{R}^{\mathrm{T}} \boldsymbol{R} \boldsymbol{A}=\boldsymbol{R}^{\mathrm{T}} \boldsymbol{Y} RTRA=RTY

{ r 1 ( x ) , ⋯   , r m ( x ) } \left\{r_1(x), \cdots, r_m(x)\right\} {r1(x),,rm(x)} 线性无关时, R \boldsymbol{R} R 列满秩, R T R \boldsymbol{R}^{\mathrm{T}} \boldsymbol{R} RTR 可逆, 于是方程组式 (5.6) 有唯一解
A = ( R T R ) − 1 R T Y \boldsymbol{A}=\left(\boldsymbol{R}^{\mathrm{T}} \boldsymbol{R}\right)^{-1} \boldsymbol{R}^{\mathrm{T}} \boldsymbol{Y} A=(RTR)1RTY

3. Matlab解法

Matlab 中的线性最小二乘的标准型为
min ⁡ A ∥ R A − Y ∥ 2 2 \min _A\|\boldsymbol{R A}-\boldsymbol{Y}\|_2^2 AminRAY22

命令为 A = R \ Y \boldsymbol{A}=\boldsymbol{R} \backslash \boldsymbol{Y} A=R\Y

2.2 最小二乘优化

优化问题中目标函数由若干函数的平方和组成且求其最小,则属于最小二乘优化问题

可以用Matlab优化工具箱解决

2.3 曲线拟合与函数逼近

拟合: 离散 ⇒ \Rightarrow 连续函数,符合最小二乘准则

逼近: 复杂连续函数 ⇒ \Rightarrow 简单连续函数,符合最小平方逼近准则

最小平方逼近准则原理类似最小二乘准则,可看作连续的版本

  • 17
    点赞
  • 19
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值