- 博客(200)
- 收藏
- 关注
原创 LSTM实例解析
由于RNN(循环神经网络)模型的梯度消失现象,会导致RNN模型的失效,因此人们对RNN的隐含层神经元进行改造,便有了LSTM(长度期记忆)模型。至于对RNN的修改,可参考循环神经网络(RNN)-CSDN博客本文来重点介绍这次实现过程中的代码。
2024-05-19 00:24:49 1381 1
原创 卷积神经网络(CNN)
大家好,这里是七七,今天来更新关于CNN相关的内容同了。本文是针对CNN原理的说明,但对于小白不是非常友好,建议先掌握神经网络相应知识再进行阅读哦。
2024-05-08 21:29:50 1025
原创 人工神经网络初步
大家好,这里是七七,由于各种比赛的缘故,使用了很多人工神经网络模型。但是很多的原理都不是很明白,就导致了不能灵活地运用┭┮﹏┭┮。为此,去看了些人工神经网络原理书,写下此专题。在进入正文之前要先说明,本文不是面向小白的(时间不够写那么多基础知识),建议在了解人工智能所需要用到的神经元、函数、梯度、矩阵的基础知识后,再来阅读此篇(这几部分基础知识真的很重要)。
2024-05-08 00:14:23 832
原创 阿里云搭建幻兽帕鲁游戏服务器
大家好,这里是七七,最近幻兽帕鲁很火,身边有很多人都在玩。有朋友想要自己搭建一个服务器,我就来帮帮他吧。用他们提供的方案,可以快速地成功搭建服务器,下面给大家展示下步骤吧。
2024-02-03 12:43:19 684
原创 软件工程复习篇
软件维护: 是在软件已经交付使用之后,为了改正错误或满足新的需要而修改软件的过程改正性维护:诊断和改正错误的过程适应性维护:为了和变化了的环境是当地配合而进行的修改软件的活动完善性维护:为了满足在用户提出的增加新功能或修改已有功能的要求和一般性的改进要求预防性维护。
2024-01-16 22:10:05 1682
原创 操作系统复习篇
一个具有一定独立功能的程序在一个数据集合上的一次动态执行过程进程是进程实体的运行过程,是系统进行资源分配和调度的一个独立单位程序段、相关的数据段和PCB这3部分构成进程实体,一般简称为进程进程管理最基本的功能一般由OS内核中的原语实现包括:进程创建、进程终止、进程阻塞与唤醒、进程挂起与激活高级调度(长程调度/作业调度)低级调度(短程调度/进程调度)中级调度(中程调度/内存调度)先来先服务(FCFS)短作业优先调度(SJF)优先权调度(PR)时间片轮转调度(RR)
2024-01-14 20:46:47 1453
原创 数学建模2023-A太阳镜厂代码认识
具体来说,这份代码先在坐标系中旋转给定的数据,得到旋转后的坐标系,然后定义了一些常量和变量,包括板子的物理尺寸,初始的俯仰角和方位角,旋转角度等等。然后,代码对于每个点进行判断,判断距离该点最远的板子与该点之间的距离是否小于100,如果小于100,则记录该点的信息,并筛选掉距离该点最远的板子与该点之间距离大于等于100的点。接下来,代码对于每个点进行判断,判断距离该点最远的板子与该点之间的距离是否小于100,如果小于100,则记录该点的信息,并筛选掉距离该点最远的板子与该点之间距离大于等于100的点。
2024-01-04 21:20:24 1252
原创 认识Docker
大家好,这里是七七,今天起开起我们的Docker技术篇,本文是介绍Docker的,不介绍如何使用和安装Docker,只是单纯的介绍Docker。
2023-12-27 16:21:10 916 1
原创 Python学习9
大家好,这里是七七,本次Python学习专题的例子剖析已经接近尾声,再更新几期本专题就结束了,对于展示的例子,可以介绍的细节部分越来越少了。今天来给大家介绍的是的实现代码。
2023-12-24 13:23:06 1011
原创 python学习4
NumPy是Python中一个用于科学计算的第三方库,它提供了ndarray(N-dimensional array)对象,可以用来表示多维数组。NumPy本身包含了大量基础的数学、统计和线性代数运算函数,例如向量和矩阵运算、随机数生成、傅里叶变换等等。由于NumPy能够进行高效的矩阵计算,因此它成为了很多科学计算库的基础库,例如SciPy、pandas等。NumPy中最重要的对象是ndarray,它是一个固定类型、多维数组。单个ndarray对象只能存储一种类型的数据,比如整数、浮点数、布尔值等等。
2023-12-18 22:19:27 1329
原创 第一次数学建模赛后总结
大家好,这里是七七。前些日子参加了一次数学建模比赛,赛后总结了一下,发现有很多事情是到了动手操作的时候,才发现问题的。总结了一下,有以下几点。
2023-12-14 11:16:23 2708 1
原创 Unity优化——加速物理引擎1
大家好,这里是七七,今天开始更新物理引擎相关的优化部分了,本文介绍的是。Unity技术有两种不同的物理引擎:用于3D物理的Nvidia的PhysX和用于2D物理的开源项目Box2D。然而,Unity对它们的实现是高度抽象的,从通过主Unity引擎配置的更高级别Unity API的角度来看,两个物理引擎解决方案以功能相同的方式运行。无论是哪种情况,对Unity的物理引擎了解的越多,就越能理解可能的性能增强。本文将介绍一些关于Unity如何实现这些系统的理论。
2023-12-11 15:31:58 1602
原创 对游戏设计案例杂谈1
规则是每位玩家各拿一种花色的全部13张牌作为手牌,从A(小)到K(大)。玩家们则各自选择一张自己的手牌且翻开,点数高的一方赢且获得奖励牌。经过13回合后,奖励牌组被全部翻开,玩家手中的所有牌也都被打出。这相当于一场"胆小鬼博弈",你会希望对手选择的是一张比你选的略小的牌。如果对手选择的牌更大,那他就赢了。而如果他选择的是一张小的多的牌,你赢是赢了,但它保留了更大的牌作为后手。如果奖励牌不再被洗散,二是严格按照从K到A的顺序翻开,并借此从游戏中完全消除所有的系统随机性,Goofsiel会是一款更好的游戏吗?
2023-12-08 14:35:28 387
原创 Unity优化——批处理的优势
在3D图形和游戏中,批处理是一个非常通用的术语,它描述了将大量任意数据块组合在一起并将它们作为单个大数据块进行处理的过程。这对于CPU,特别是GPU来说是理想的,因为它可以使用多个内核同时粗粝多个任务。在内存中不同位置来回切换内核是需要时间的,因此切换内核所花的时间越少越好。在某些情况下,批处理的对象指的是网格、顶点、边、UV坐标和其他用于描述3D对象的不同数据类型的大集合。然而,该术语也可以简单代表批处理音频文件、精灵、纹理文件和其他大数据集的行为。
2023-12-08 11:06:25 1432
原创 Unity优化——脚本优化策略4
在前面我们讨论了使用这些Unity Engine特性来避免在大多数帧中出现过多CPU工作负载的优缺点。不管采用哪种方法,都存在一个额外的风险,即需要编写大量的MonoBehaviour来定期调用某个函数,这意味着在同一帧中同时触发了太多的方法。想象一下,成千上万的MonoBehaviour在场景开始时一起初始化,每个MonoBehaviour同时启动一个协程,每500毫秒处理一次AI任务。
2023-11-29 12:14:05 1243 1
原创 Unity优化——脚本优化策略1
Unity中编写脚本的主要意义是在从MonoBehaviour继承的类中编写回调函数,Unity会在必要时调用它们。最常用的4个回调是Awake()、Start()、Update()和FixedUpdate()。在第一次创建MonoBehaviour时调用Awake()。Start()在Awake()之后不久,但在第一个Update()之前调用。在场景初始化期间,每个MonoBehaviour组件的Awake()回调在Start()回调之前调用。
2023-11-24 10:46:09 1177
原创 UnityAI——常用感知类型的实现
要实现视觉感知,要为感兴趣的、能被看到的那些游戏对象加上一个视觉触发器,视觉触发器类是Trigger的派生类,对于AI角色能看到并需要做出相应的每个游戏对象,都需要添加它,例如玩家、宝物、可以捡起的武器等。为了让角色具有记忆,实现了一个SenseMemory类,这个类具有一个记忆列表,列表中保存了每个最近感知到的对象、感知类型、最后感知到该对象的时间以及还能在记忆中保留的时间,以及何时删除记忆对象。一个近距离,大锥角的圆锥可以模拟出视觉中的余光,而近距离的视觉通常用更长、更窄的圆锥体来表示。
2023-11-22 14:48:28 204 1
原创 网络流问题
网络流问题是一类经典的组合优化问题,它在图论和网络分析中扮演着重要的角色。这类问题通常涉及在网络中沿着边进行资源分配的情况,如输送流体、电力传输、数据传输等。网络流问题的模型基于一个有向图,其中节点表示资源的来源或目的地,边表示资源在节点之间的流动路径。每条边都有一个容量限制,表示该路径上能够通过的最大资源流量。网络流问题通常有两个主要的变体:最大流问题和最小割问题。
2023-11-15 16:30:01 520 1
原创 二部图问题
二部图是一种特殊的图,其中所有的节点可以被分成两个不相交的集合,使得图中的每条边连接的两个节点分属于不同的集合。换句话说,二部图可以被划分为两个独立的顶点集合,且所有边的两个节点分别属于这两个集合。二部图可以用来描述许多现实世界中的问题,例如婚姻稳定性问题、任务分配等。因此,判定一个图是否是二部图的问题具有重要的意义。如果使用染色算法判定二部图,则时间复杂度为 O(V+E),其中 V 是节点的数量,E 是边的数量。这是因为每个点和每条边仅会进出一次。
2023-11-15 16:06:35 397
原创 UnityAI——排队过窄洞
大家好,这里是七七。本文想要会用只看本文即可,若想要彻底理解加以从本系列的前些文章开始看今天要为大家介绍的例子是Unity中的排队过洞AI,为了让人群有序地通过窄洞,而不是挤在一起,我们需要用到两种操控性为,分别是和话不多说,先看效果排队过窄洞下面为大家介绍集体步骤。
2023-11-14 14:51:01 1168
原创 图象处理算法(介绍)
6. 特征提取(Feature Extraction):特征提取是从图像中提取有用信息的过程,例如:形状、纹理、颜色、大小和方向等。3. 直方图均衡化(Histogram Equalization):直方图均衡化用于增强图像的对比度和亮度,通过调整像素强度值的分布从而使图像更加清晰和易于处理。它可以是低通、高通、带通、带阻滤波器等。5. 分割(Segmentation):图像分割指的是将图像中的像素按照其特定属性或区域进行划分的过程,包括基于区域、基于边缘、基于阈值等方法。
2023-11-12 15:55:11 577
原创 数值分析算法(简介)
这些算法只是数值分析中的一部分,还有其他一些算法和技术,也可以根据具体问题的要求进行编写。在编写库函数时,注意考虑算法的正确性、效率和稳定性,并进行必要的测试和验证。当在比赛中使用高级语言进行编程时,可以编写相应的库函数来实现数值分析中常用的算法,如方程组求解、矩阵运算和函数积分等算法。LU分解法(LU Decomposition):将系数矩阵分解为下三角矩阵和上三角矩阵的乘积,并进行前/后代替换,以求解线性方程组。矩阵乘法:编写函数实现两个矩阵的相乘操作,可以使用循环或向量化等方式来提高效率。
2023-11-12 15:54:10 445
原创 最优化理论的三大非经典算法:模拟退火法、神经网络、遗传算法
当涉及到模拟退火法、神经网络和遗传算法时,它们都是优化和搜索问题的常见算法。下面我将逐个介绍这些算法的基本原理和应用。1. 模拟退火法(Simulated Annealing):模拟退火法是一种全局优化算法,模拟了金属冶炼中的退火过程。它通过接受更差的解决方案的可能性来避免陷入局部最优解。模拟退火法在搜索空间中随机移动,并逐渐减少移动的范围,以找到全局最优解。主要步骤包括初始化解决方案,定义能量函数(目标函数),设置初始温度、迭代次数和退火速度。
2023-11-12 15:52:04 467
原创 一些连续离散化方法
生成一组连续数据% 定义自定义的离散化规则% 阈值% 使用自定义规则进行离散化% 将离散结果转换为整数值(0和1)% 显示结果。
2023-11-12 15:46:54 1632
原创 网格算法和穷举法
网格算法和穷举法都是暴力搜索最优点的算法,在很多竞赛题中有应用,当重点讨论模型本身而轻视算法的时候,可以使用这种暴力方案,最好使用一些高级语言作为编程工具当需要在多个离散的点(比如网格点)中寻找最优解时,网格算法和穷举法都是常用的方法。网格算法,也称为坐标遍历法,是一种基本的离散搜索算法。其主要思想是将区域按网格划分,并在每个网格点处对函数进行计算,从而逐个比较取得最优解。网格算法总是能找到全局最优解,但是当搜索区域维度增多时,计算时间会呈指数级增长。
2023-11-12 15:41:48 444
原创 模拟退火算法MATLAB实现
算法试图随着控制参数T的降低,使目标函 数值f(内能E)也逐渐降低,直至趋于全局最 小值(退火中低温时的最低能量状态),算法 工作过程就像固体退火过程一样。
2023-11-12 15:35:32 1191
输入一个整数,输出每个数字对应的拼音
2023-03-27
TA创建的收藏夹 TA关注的收藏夹
TA关注的人