使用Julia语言展示几何平均值与算数平均值在实际应用中的差别(采用注册计量师考试试题)

文章探讨了在注册计量师考试中的天平测量问题,指出几何平均值在处理可能存在系统误差的数据时更为合适。通过Julia编程展示了如何计算两种平均值并用图形展示其差异,显示几何平均值在数据集平均值恒定时,能更有效地消除系统误差。
摘要由CSDN通过智能技术生成

理论部分

在注册计量师考试中有一道试题,大体内容为:

现在有一块砝码在等臂天平上进行测量,第一次测得值是19.6g,调换两边位置后的测得值是19.7g,
天平最终测得检测样品的重量为多少?

  个别同事可能会将算数平均值作为这个砝码的最终测量值,但实际应当使用几何平均值的方式计算,算数平均值通常假设误差是随机分布的,且没有系统偏差,而采用几何平均值的方式可以有效的消除系统误差,而且几何平均值对极端值相对不敏感,更能反映数据的整体情况。。

  取五组平均值均为19.65g的检测数据,通过以下Julia代码计算模拟的图片即可体现出两种算法在多组数据中的不同。这里的w_{1}为天平一侧测得值,w_{2}为另一侧测得值,两种方法的计算公式:

Markdown版本计算公式

集合平均值:$\sqrt{w_{1}w_{2}}$
算数平均值:$\frac{w_{1}+w_{2}}{2}$

Julia语言实现

using Plots  
  
measurements = [(19.6, 19.7), (19.5, 19.8), (19.4, 19.9), (19.7, 19.6), (19.8, 19.5)]  
  
arithmetic_means = [(m1 + m2) / 2 for (m1, m2) in measurements]  
geometric_means = [sqrt(m1 * m2) for (m1, m2) in measurements]  
  
indices = 1:length(measurements)  
   
p = plot()  
  
# 算术平均值的散点和曲线  
scatter!(indices, arithmetic_means, label="Arithmetic Mean", markercolor=:blue)  
plot!(indices, arithmetic_means, seriestype=:line, label="", linecolor=:blue, linewidth=2)  
  
scatter!(indices, geometric_means, label="Geometric Mean", markercolor=:red)  
plot!(indices, geometric_means, seriestype=:line, label="", linecolor=:red, linewidth=2)  
  
xlabel!("Measurement Pair Index")  
ylabel!("Mean Value (g)")  
title!("Comparison of Arithmetic and Geometric Means")  
  

display(p)  
savefig(p, "GGboy.png")

根据生成图像可以看出,五组数据平均值均为19.65g,几何平均值方法更有效的消除系统误差

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值