# 误差传递公式计算（注册计量师试题）

### 题目举例

U : 拓展不确定度 U:拓展不确定度 ,由合成标准不确定度 u c u_{c} 的倍数表示的测量不确定度
K ：包含因子 K：包含因子 ，用于求得扩展不确定度，对合成标准不确定度所乘的数字因子，在数值上它等于扩展不确定度与合成标准不确定度之比。 U = K ∗ u c U=K*u_{c}

### 误差传递公式简介

u ( y ) = ( ∂ f ∂ x 1 ⋅ u ( x 1 ) ) 2 + ( ∂ f ∂ x 2 ⋅ u ( x 2 ) ) 2 + . . . + ( ∂ f ∂ x n ⋅ u ( x n ) ) 2 u(y) = \sqrt{\left(\frac{\partial f}{\partial x_1} \cdot u(x_1)\right)^2 + \left(\frac{\partial f}{\partial x_2} \cdot u(x_2)\right)^2 + ... + \left(\frac{\partial f}{\partial x_n} \cdot u(x_n)\right)^2}

### 题目解析

#### 第1步, 计算 x 1 x_{1} 、 x 2 x_{2} 的标准不确定度 u c u_{c} :

x 1 = 3.00 , U ( x 1 ) = 0.02 ( k = 2 ) x_{1} = 3.00, U(x1) = 0.02 (k=2) x 2 = 2.00 , U ( x 2 ) = 0.03 ( k = 3 ) x_{2} = 2.00, U(x2) = 0.03 (k=3)

U = k ∗ u U=k*u ，我们可以计算出标准不确定度 u x 1 u_{x_{1}} u x 2 u_{x_{2}}
u x 1 = U x 1 k = 0.02 2 = 0.01 u_{x_{1}}=\frac{U_{x_{1}}}{k}=\frac{0.02}{2}=0.01
u x 2 = U x 2 k = 0.03 3 = 0.01 u_{x_{2}}=\frac{U_{x_{2}}}{k}=\frac{0.03}{3}=0.01

#### 第2步，求导 x 1 x_{1} 、 x 2 x_{2} 的偏导数

x 1 x_{1} 的偏导数 ∂ y ∂ x 1 \frac{{\partial y}}{{\partial x_{1}}} :

∂ y ∂ x 1 = 2 x 1 x 2 \frac{{\partial y}}{{\partial x_{1}}} = \frac{2x_{1}}{x_{2}}

x 2 x_{2} 的偏导数 ∂ y ∂ x 2 \frac{{\partial y}}{{\partial x_{2}}}

∂ y ∂ x 2 = 0 ⋅ x 2 − x 1 2 ⋅ ( − 1 x 2 2 ) x 2 2 = − x 1 2 x 2 3 \frac{{\partial y}}{{\partial x_{2}}} = \frac{0 \cdot x_{2} - x_{1}^{2} \cdot (-\frac{1}{{x_{2}}^{2}})}{{x_{2}}^{2}} = -\frac{x_{1}^{2}}{{x_{2}}^{3}} （注意负号来自于步骤 1 中对分母的求导）

∂ y ∂ x 2 = − x 1 2 x 2 2 ⋅ x 2 = − x 1 2 x 2 3 \frac{{\partial y}}{{\partial x_{2}}} = -\frac{x_{1}^{2}}{{x_{2}}^{2} \cdot x_{2}} = -\frac{x_{1}^{2}}{{x_{2}}^{3}}

#### 第3步，计算输出量Y的合成标准不确定度 u c ( y ) u_{c}(y)

u c ( y ) = ( ∂ y ∂ x 1 ∗ u ( x 1 ) ) 2 + ( ∂ y ∂ x 2 ∗ u ( x 2 ) ) 2 uc(y) = \sqrt{(\frac{∂y}{∂x_{1}} * u(x_{1}))^2 + (\frac{∂y}{∂x_{2}}* u(x_{2}))^2 }
= ( 2 ∗ x 1 x 2 ∗ u ( x 1 ) ) 2 + ( x 1 2 x 2 2 ∗ u ( x 2 ) ) 2 = \sqrt{(\frac{2*x_{1}}{x_{2}} * u(x1))^2 + (\frac{x_{1}^{2}}{x_{2}^{2}} * u(x2))^2}

x 1 = 3.00 , u ( x 1 ) = 0.01 , x 2 = 2.00 , u ( x 2 ) = 0.01 x_{1}=3.00, u(x_{1})=0.01, x_{2}=2.00, u(x_{2})=0.01 代入，得：
u c ( y ) = ( 2 ∗ 3.00 2.00 ∗ 0.01 ) 2 + ( 3.0 0 2 2.0 0 2 ∗ 0.01 ) 2 = ( 0.03 ) 2 + ( 0.0225 ) 2 ≈ 0.0361 u_{c}(y) = \sqrt{(\frac{2*3.00}{2.00} * 0.01)^2 + (\frac{3.00^2}{2.00^2} * 0.01)^2}= \sqrt{(0.03)^2 + (0.0225)^2}≈ 0.0361

#### 第4步， 合成扩展不确定度 U ( y ) U(y)

U ( y ) = K ∗ u c ( y ) = 2 ∗ 0.0361 ≈ 0.0722 U(y) = K * u_{c}(y) = 2 * 0.0361 ≈ 0.0722

• 8
点赞
• 5
收藏
觉得还不错? 一键收藏
• 0
评论
07-24 1177
03-20 3935
10-23 2538
08-15
04-16
01-26
11-11
05-21 369
05-22 375
05-21 1199
05-20 870

### “相关推荐”对你有帮助么？

• 非常没帮助
• 没帮助
• 一般
• 有帮助
• 非常有帮助

1.余额是钱包充值的虚拟货币，按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载，可以购买VIP、付费专栏及课程。