动态规划:多重背包问题-二进制优化

暴力解法(TLE)

#include <iostream>
#include <algorithm>
using namespace std;

int N, V;

const int MAXN = 110;
int v[MAXN], w[MAXN], s[MAXN];
int f[MAXN][MAXN];


int main() {
    cin >> N >> V;
    for(int i = 1; i <= N; ++i) {
        cin >> v[i] >> w[i] >> s[i];
    }
    
    for(int i = 1; i <= N; ++i) {
        for(int j = 0; j <= V; ++j) {
            for(int k = 0; k <= s[i] && j >= v[i] * k; ++k) {
                f[i][j] = max(f[i][j], f[i - 1][j - k * v[i]] + w[i] * k);
            }
        }
    }
    cout << f[N][V];

}

二进制优化:

#include <iostream>
#include <algorithm>
using namespace std;

int N, V;

const int MAXN = 11010;
int v[MAXN], w[MAXN];
int f[MAXN];
int m = 1;

int main() {
    cin >> N >> V;
    for(int i = 1; i <= N; ++i) {
        int volume, weight, sum;
        cin >> volume >> weight >> sum;

        for(int cnt = 1; sum >= cnt; cnt *= 2) {
            v[m] = volume * cnt;
            w[m] = weight * cnt;
            ++m;
            sum -= cnt;
        }

        if(sum > 0) {
            v[m] = volume * sum;
            w[m] = weight * sum;
            ++m;
        }
    }
    
    for(int i = 1; i <= m - 1; ++i) {
        for(int j = V; j >= v[i]; --j) {
            f[j] = max(f[j], f[j - v[i]] + w[i]);
        }
    }
    cout << f[V];

}

原理:将一种物品按数量拆分为1、2、4、8、16...为一组形成新物品,转化为01背包问题。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值