Leecode1049.最后一块石头的重量
题目
-
有一堆石头,用整数数组 stones 表示。其中 stones[i] 表示第 i 块石头的重量。
每一回合,从中选出任意两块石头,然后将它们一起粉碎。假设石头的重量分别为 x 和 y,且 x <= y。那么粉碎的可能结果如下:
- 如果 x == y,那么两块石头都会被完全粉碎;
- 如果 x != y,那么重量为 x 的石头将会完全粉碎,而重量为 y 的石头新重量为 y-x。
- 最后,最多只会剩下一块 石头。返回此石头 最小的可能重量 。如果没有石头剩下,就返回 0。
示例:
-
输入:stones = [2,7,4,1,8,1]
输出:1
解释:
组合 2 和 4,得到 2,所以数组转化为 [2,7,1,8,1],
组合 7 和 8,得到 1,所以数组转化为 [2,1,1,1],
组合 2 和 1,得到 1,所以数组转化为 [1,1,1],
组合 1 和 1,得到 0,所以数组转化为 [1],这就是最优值。
详细题解及算法思路
-
为了便于讨论,若最终没有石头剩下,则视作最终剩下了一块重量为 00 的石头。
例如有四块石头,其重量分别为 aa,bb,cc,dd,且满足 a b c d,a≤b≤c≤d。由于石头的重量不可能增加,无论怎么操作,我们是不可能得到大小为 d+c+b−a 的石头的,该重量已经超过了 c以及 d。
那么,上述和式的最小非负值所对应的这组 ki 是合法的吗?
我们将这组 ki 对应的石头划分成两堆, ki =1 的石头分至一堆, ki =−1 的石头分至另一堆。由于这是最小非负值所对应的 ki ,这两堆石头重量之差的绝对值也是所有划分当中最小的。
记这两堆石头重量之差的绝对值为 diff。若能找到一种粉碎方案,使得最后一块石头的重量也为 diff,那就能说明这组 ki 是合法的。我们不断地粉碎石头。每次粉碎时,记重量最大的石头所处的堆为 AA(若两堆最大重量相同则任选一堆),另一堆为 BB。从 AA 中取出重量最大的石头,BB 中任取一石头,若没有完全粉碎,则将新石头重新放入 AA。这一操作从每堆石头中减去了同样的重量,从而保证重量之差的绝对值在粉碎前后是不变的。若出现一堆没有石头,而另一堆不止一块石头的情况,记有石头的那一堆为 AA,另一堆为 BB。要继续粉碎,则需要从 AA 中取出一块石头移入 BB,然后按规则粉碎。但移入操作让重量之差的绝对值变得更小,与事实(上文加粗文字)矛盾,所以不会出现这种情况。因此,按照上述流程操作,最后一块石头的重量为 diff,所以这组 ki 对应着一个合法的粉碎结果。
-
就是要凑到二分之一的数组总和
-
动态规划
- 三大步骤:
- 确定dp数组的定义:该位置的values[i]+i的值
- 找出dp数组的递推公式
- 并且找初始值
- 三大步骤:
Java代码实现
-
class Solution { public int lastStoneWeightII(int[] stones) { int sum = 0; for (int weight : stones) { sum += weight; } int n = stones.length