Leecode1049.最后一块石头的重量-动态规划详细题解及算法思路

通过详细分析LeetCode 1049题目的解题思路,理解动态规划求解最后一块石头重量的方法。文章探讨了如何将石头重量问题转化为寻找二分之一数组总和的动态规划解决方案,并提供了Java代码实现。
摘要由CSDN通过智能技术生成

Leecode1049.最后一块石头的重量

题目
  • 有一堆石头,用整数数组 stones 表示。其中 stones[i] 表示第 i 块石头的重量。

    每一回合,从中选出任意两块石头,然后将它们一起粉碎。假设石头的重量分别为 x 和 y,且 x <= y。那么粉碎的可能结果如下:

    • 如果 x == y,那么两块石头都会被完全粉碎;
    • 如果 x != y,那么重量为 x 的石头将会完全粉碎,而重量为 y 的石头新重量为 y-x。
    • 最后,最多只会剩下一块 石头。返回此石头 最小的可能重量 。如果没有石头剩下,就返回 0。
示例:
  • 输入:stones = [2,7,4,1,8,1]
    输出:1
    解释:
    组合 2 和 4,得到 2,所以数组转化为 [2,7,1,8,1],
    组合 7 和 8,得到 1,所以数组转化为 [2,1,1,1],
    组合 2 和 1,得到 1,所以数组转化为 [1,1,1],
    组合 1 和 1,得到 0,所以数组转化为 [1],这就是最优值。

详细题解及算法思路
  • 为了便于讨论,若最终没有石头剩下,则视作最终剩下了一块重量为 00 的石头。

    例如有四块石头,其重量分别为 aa,bb,cc,dd,且满足 a b c d,a≤b≤c≤d。由于石头的重量不可能增加,无论怎么操作,我们是不可能得到大小为 d+c+b−a 的石头的,该重量已经超过了 c以及 d。

    那么,上述和式的最小非负值所对应的这组 ki 是合法的吗?

    我们将这组 ki 对应的石头划分成两堆, ki =1 的石头分至一堆, ki =−1 的石头分至另一堆。由于这是最小非负值所对应的 ki ,这两堆石头重量之差的绝对值也是所有划分当中最小的。

    记这两堆石头重量之差的绝对值为 diff。若能找到一种粉碎方案,使得最后一块石头的重量也为 diff,那就能说明这组 ki 是合法的。我们不断地粉碎石头。每次粉碎时,记重量最大的石头所处的堆为 AA(若两堆最大重量相同则任选一堆),另一堆为 BB。从 AA 中取出重量最大的石头,BB 中任取一石头,若没有完全粉碎,则将新石头重新放入 AA。这一操作从每堆石头中减去了同样的重量,从而保证重量之差的绝对值在粉碎前后是不变的。若出现一堆没有石头,而另一堆不止一块石头的情况,记有石头的那一堆为 AA,另一堆为 BB。要继续粉碎,则需要从 AA 中取出一块石头移入 BB,然后按规则粉碎。但移入操作让重量之差的绝对值变得更小,与事实(上文加粗文字)矛盾,所以不会出现这种情况。因此,按照上述流程操作,最后一块石头的重量为 diff,所以这组 ki 对应着一个合法的粉碎结果。

  • 就是要凑到二分之一的数组总和

  • 动态规划

    • 三大步骤:
      • 确定dp数组的定义:该位置的values[i]+i的值
      • 找出dp数组的递推公式
      • 并且找初始值
Java代码实现
  • class Solution {
         
        public int lastStoneWeightII(int[] stones) {
         
            int sum = 0;
            for (int weight : stones) {
         
                sum += weight;
            }
            int n = stones.length
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值