题目一:小蓝与操作序列
Description:
小蓝学会了一种新的数据结构:栈。 栈是一种仅在表尾进行插入和删除操作的线性表。 表头被称为栈底,表尾被称为栈尾。 小蓝实现了一个支持四种操作的栈: push:在栈顶压入一个元素, 新元素会置于原本的栈顶上方,成为新的栈顶。 pop:弹出现在的栈顶,原本的栈顶将成为新的栈顶。 如果此时栈中不存在元素,那么程序会出错。 top:返回现在的栈顶元素。 如果此时栈中不存在元素,那么程序会出错。 clear:清空栈中元素,将栈置空。 但是他在使用这种数据结构时经常出错。 现在他写出了自己使用栈时的一个操作序列, 你能判断该操作序列是否合法吗? 一个操作序列合法当且仅当 一个空栈依次执行对应操作时不会出错。
input:
输入第一行包含一个整数N , 代表操作序列的操作数目。 接下来包含 N 行,每行包含一个字符串,表示一个操作。 该字符串一定是上述四个操作中的一个, 即 "push" , "pop" , "top" 和 "clear" 四种字符串中的一种(不包含引号)。
output:
输出两行。 如果该操作序列合法,那么输出第一行 "Yes" ,第二行输出一个整数:最后栈中的元素数目; 否则输出 "No" ,第二行输出一个整数:该操作序列会在执行第几个操作时出错(输出不包含引号)。
sample input:
输入样例1
5
push
push
top
pop
push
输入样例 2
5
push
top
push
clear
pop
sample output:
输出样例1
Yes
2
输出样例 2
No
5
#include <bits/stdc++.h>
using namespace std;
int main()
{
stack<int> s;
int n;
string str;
cin>>n;
for(int i=1;i<=n;i++)
{
cin>>str;
if(str=="push") s.push(1);
else if(str=="clear") while(!s.empty()) s.pop();
else if(str=="top")
{
if(s.empty())
{
cout<<"No\n"<<i;
return 0;
}
}
else
{
if(s.empty())
{
cout<<"No\n"<<i;
return 0;
}
s.pop();
}
}
cout<<"Yes\n"<<s.size();
return 0;
}
题目二:小兰与角谷猜想
Description:
角谷猜想是指对于每一个正整数, 如果它是奇数,则对它乘 3 再加1 , 如果它是偶数,则对它除以2 , 如此循环,最终都能够得到1 。 小蓝了解到,对于小于1000000000 的数字,我们总可以在 1000 步以内的得到 。 现在他想知道, 【l,r】区间的数中哪个数得到 1 的步骤最大。
input:
输入包含一行,共两个整数 l 和r , 表示小蓝想查询的区间。
output:
输出一行,包含一个整数, [l,r]区间的数中得到1 的步骤最大的那个数。 如果存在多个步骤最大的数,那么输出最小的那个。
sample input:
样例输入1
1 10
输入样例 2
999999900 1000000000
sample output:
样例输出1
9
输出样例 2
999999906
#include <iostream>
#include <algorithm>
using namespace std;
int collatzSteps(long long n) {
int steps = 0;
while (n != 1) {
if (n % 2 != 0) {
n = n * 3 + 1;
} else {
n = n / 2;
}
steps++;
}
return steps;
}
int main() {
long long l, r;
int maxSteps = 0;
long long maxNum = 0;
cin >> l >> r;
for (long long i = l; i <= r; i++) {
int steps = collatzSteps(i);
if (steps > maxSteps) {
maxSteps = steps;
maxNum = i;
}
}
cout << maxNum <<endl;
return 0;
}
题目三:小兰与名氏距离
Description:
input:
输入第一行包含一个整数 N, 表示二维空间中点的数目。 接下来包含 N 行,第行包含两个整数, 表示一个点对的 X 坐标和 Y 坐标。
output:
输出一行,包含一个整数, 表示距离与p 无关的点对数目。
sample input:
3
0 1
1 0
1 1
sample output:
2
#include <iostream>
#include <vector>
#include <unordered_map>
#include <cmath>
using namespace std;
struct pos {
int x;
int y;
};
int main() {
int n;
cin >> n;
vector<pos> sa(n);
for (int i = 0; i < n; i++)
cin >> sa[i].x >> sa[i].y;
unordered_map<int, int> x_count, y_count;
// 计算每个x坐标和y坐标的出现次数
for (int i = 0; i < n; i++) {
x_count[sa[i].x]++;
y_count[sa[i].y]++;
}
long long num = 0;
// 计算具有相同x坐标或y坐标的点对数量
for (int i = 0; i < n; i++) {
num += x_count[sa[i].x] - 1;
num += y_count[sa[i].y] - 1;
}
cout << num / 2 << endl; // 每对点对会被计算两次,所以除以2
return 0;
}
题目四:小兰与线段
Description:
给定一个仅包含 0和1,大小为N*M的矩阵。 小蓝想找到其中最长线段的长度。
input:
输入第一行包含两个整数 N 和M , 表示矩阵的行和列数目。 接下来包含 N行,第i 行包含M 个整数, 表示矩阵的第 i行。
output:
输出一行,包含一个整数,表示矩阵中最长线段的长度。
sample input:
3 3
0 1 1
1 1 0
0 1 0
sample output:
3
1<=N,M<=1000,数字仅包含0和1
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
int n,m,a[1000][1000],cnt0=0,cnt1=0,ans=0;
int main()
{
cin>>n>>m;
for(int i=0;i<n;i++)
{
for(int j=0;j<m;j++)
{
cin>>a[i][j];
if(a[i][j])
{
cnt1++;
ans=max(ans,cnt0);
cnt0=0;
}
else
{
cnt0++;
ans=max(ans,cnt1);
cnt1=0;
}
}
ans=max(ans,cnt0);
ans=max(ans,cnt1);
cnt0=cnt1=0;
}
cnt0=cnt1=0;
for(int j=0;j<m;j++)
{
for(int i=0;i<n;i++)
{
if(a[i][j])
{
cnt1++;
ans=max(ans,cnt0);
cnt0=0;
}
else
{
cnt0++;
ans=max(ans,cnt1);
cnt1=0;
}
}
ans=max(ans,cnt0);
ans=max(ans,cnt1);
cnt0=cnt1=0;
}
cout<<ans;
return 0;
}
题目五:小兰与子数组
Description:
数组的范围是数组中最大元素和最小元素的差值。 对于小蓝而言,求数组的范围是轻而易举的。 但是现在,他想知道数组的所有子数组中, 子数组范围的最大值和次大值。 子数组是由数组中的一个或连续多个整数组成一个数列
input:
输入包含两行。 第一行包含一个整数N ,表示数组的长度。 第一行包含 N 个整数,表示数组中各个元素的值。
output:
输出一行,包含两个整数,表示子数组范围的最大值和次大值。
sample input:
5
4 3 2 1 4
sample output:
3 3
#include <iostream>
#include <bits/stdc++.h>
using namespace std;
int main()
{
int n,maxn;
cin>>n;
int a[n+1];
for(int i=0;i<n;i++)
{
cin>>a[i];
}
sort(a,a+n);
maxn=a[n-1]-a[0];
cout<<maxn<<" ";
if((a[n-1]-a[n-2])>(a[1]-a[0]))
cout<<a[n-1]-a[1];
else cout<<a[n-2]-a[0];
return 0;
}