22蓝桥杯训练6

题目一:小蓝与操作序列

Description:

小蓝学会了一种新的数据结构:栈。 栈是一种仅在表尾进行插入和删除操作的线性表。 表头被称为栈底,表尾被称为栈尾。 小蓝实现了一个支持四种操作的栈: push:在栈顶压入一个元素, 新元素会置于原本的栈顶上方,成为新的栈顶。 pop:弹出现在的栈顶,原本的栈顶将成为新的栈顶。 如果此时栈中不存在元素,那么程序会出错。 top:返回现在的栈顶元素。 如果此时栈中不存在元素,那么程序会出错。 clear:清空栈中元素,将栈置空。 但是他在使用这种数据结构时经常出错。 现在他写出了自己使用栈时的一个操作序列, 你能判断该操作序列是否合法吗? 一个操作序列合法当且仅当 一个空栈依次执行对应操作时不会出错。

input:

输入第一行包含一个整数N , 代表操作序列的操作数目。 接下来包含 N 行,每行包含一个字符串,表示一个操作。 该字符串一定是上述四个操作中的一个, 即 "push" , "pop" , "top" 和 "clear" 四种字符串中的一种(不包含引号)。

output:

输出两行。 如果该操作序列合法,那么输出第一行 "Yes" ,第二行输出一个整数:最后栈中的元素数目; 否则输出 "No" ,第二行输出一个整数:该操作序列会在执行第几个操作时出错(输出不包含引号)。

sample input:

输入样例1

5

push

push

top

pop

push

输入样例 2

5

push

top

push

clear

pop

sample output:

输出样例1

Yes

2

输出样例 2

No

5

#include <bits/stdc++.h>
using namespace std;

int main()
{
	stack<int> s;
	int n;
	string str;
	cin>>n;
	for(int i=1;i<=n;i++)
	{
		cin>>str;
		if(str=="push") s.push(1);
		else if(str=="clear") while(!s.empty()) s.pop();
		else if(str=="top")
		{
			if(s.empty())
			{
				cout<<"No\n"<<i;
				return 0;
			}
		}
		else
		{
			if(s.empty())
			{
				cout<<"No\n"<<i;
				return 0;
			}
			s.pop();
		}
	}
	cout<<"Yes\n"<<s.size();
	return 0;
}

题目二:小兰与角谷猜想

Description:

角谷猜想是指对于每一个正整数, 如果它是奇数,则对它乘 3 再加1 , 如果它是偶数,则对它除以2 , 如此循环,最终都能够得到1 。 小蓝了解到,对于小于1000000000 的数字,我们总可以在 1000 步以内的得到 。 现在他想知道, 【l,r】区间的数中哪个数得到 1 的步骤最大。

input:

输入包含一行,共两个整数 l 和r , 表示小蓝想查询的区间。

output:

输出一行,包含一个整数, [l,r]区间的数中得到1 的步骤最大的那个数。 如果存在多个步骤最大的数,那么输出最小的那个。

sample input:

样例输入1

1 10

输入样例 2

999999900 1000000000

sample output:

样例输出1

9

输出样例 2

999999906

#include <iostream>
#include <algorithm>
using namespace std;
int collatzSteps(long long n) {
    int steps = 0;
    while (n != 1) {
        if (n % 2 != 0) {
            n = n * 3 + 1;
        } else {
            n = n / 2;
        }
        steps++;
    }
    return steps;
}

int main() {
    long long l, r;
    int maxSteps = 0;
    long long maxNum = 0;

    cin >> l >> r;

    for (long long i = l; i <= r; i++) {
        int steps = collatzSteps(i);
        if (steps > maxSteps) {
            maxSteps = steps;
            maxNum = i;
        }
    }

    cout << maxNum <<endl;

    return 0;
}

题目三:小兰与名氏距离

Description:

input:

输入第一行包含一个整数 N, 表示二维空间中点的数目。 接下来包含 N 行,第行包含两个整数, 表示一个点对的 X 坐标和 Y 坐标。

output:

输出一行,包含一个整数, 表示距离与p 无关的点对数目。

sample input:

3

0 1

1 0

1 1

sample output:

2

#include <iostream>
#include <vector>
#include <unordered_map>
#include <cmath>

using namespace std;

struct pos {
    int x;
    int y;
};

int main() {
    int n;
    cin >> n;

    vector<pos> sa(n);
    for (int i = 0; i < n; i++)
        cin >> sa[i].x >> sa[i].y;

    unordered_map<int, int> x_count, y_count;

    // 计算每个x坐标和y坐标的出现次数
    for (int i = 0; i < n; i++) {
        x_count[sa[i].x]++;
        y_count[sa[i].y]++;
    }

    long long num = 0;

    // 计算具有相同x坐标或y坐标的点对数量
    for (int i = 0; i < n; i++) {
        num += x_count[sa[i].x] - 1;
        num += y_count[sa[i].y] - 1;
    }

    cout << num / 2 << endl; // 每对点对会被计算两次,所以除以2

    return 0;
}

题目四:小兰与线段

Description:

给定一个仅包含 0和1,大小为N*M的矩阵。 小蓝想找到其中最长线段的长度。

input:

输入第一行包含两个整数 N 和M , 表示矩阵的行和列数目。 接下来包含 N行,第i 行包含M 个整数, 表示矩阵的第 i行。

output:

输出一行,包含一个整数,表示矩阵中最长线段的长度。

sample input:

3 3

0 1 1

1 1 0

0 1 0

sample output:

3

1<=N,M<=1000,数字仅包含0和1

#include <bits/stdc++.h>
using namespace std;
typedef long long ll;

int n,m,a[1000][1000],cnt0=0,cnt1=0,ans=0;
int main()
{
	cin>>n>>m;
	for(int i=0;i<n;i++)
	{
		for(int j=0;j<m;j++)
		{
			cin>>a[i][j];
			if(a[i][j])
			{
				cnt1++;
				ans=max(ans,cnt0);
				cnt0=0;
			}
			else
			{
				cnt0++;
				ans=max(ans,cnt1);
				cnt1=0;
			}
		}
		ans=max(ans,cnt0);
		ans=max(ans,cnt1);
		cnt0=cnt1=0;
	}
	cnt0=cnt1=0;
	for(int j=0;j<m;j++)
	{
		for(int i=0;i<n;i++)
		{
			if(a[i][j])
			{
				cnt1++;
				ans=max(ans,cnt0);
				cnt0=0;
			}
			else
			{
				cnt0++;
				ans=max(ans,cnt1);
				cnt1=0;
			}
		}
		ans=max(ans,cnt0);
		ans=max(ans,cnt1);
		cnt0=cnt1=0;
	}
	cout<<ans;
	return 0;
}

题目五:小兰与子数组

Description:

数组的范围是数组中最大元素和最小元素的差值。 对于小蓝而言,求数组的范围是轻而易举的。 但是现在,他想知道数组的所有子数组中, 子数组范围的最大值和次大值。 子数组是由数组中的一个或连续多个整数组成一个数列

input:

输入包含两行。 第一行包含一个整数N ,表示数组的长度。 第一行包含 N 个整数,表示数组中各个元素的值。

output:

输出一行,包含两个整数,表示子数组范围的最大值和次大值。

sample input:

5

4 3 2 1 4

sample output:

3 3

#include <iostream>
#include <bits/stdc++.h>

using namespace std;

int main()
{
    int n,maxn;
    cin>>n;
    int a[n+1];
    for(int i=0;i<n;i++)
    {
        cin>>a[i];
    }
    sort(a,a+n);
    maxn=a[n-1]-a[0];
    cout<<maxn<<" ";
    if((a[n-1]-a[n-2])>(a[1]-a[0]))
        cout<<a[n-1]-a[1];
    else cout<<a[n-2]-a[0];
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值