跳台阶
一个楼梯共有 n 级台阶,每次可以走一级或者两级,问从第 00级台阶走到第 n 级台阶一共有多少种方案。
输入格式
共一行,包含一个整数 n。
输出格式
共一行,包含一个整数,表示方案数。
数据范围
1≤n≤15
输入样例:
5
输出样例:
8
#include <iostream>
using namespace std;
const int N=20;
int n;
int f[N];
int main()
{
cin>>n;
f[1]=1,f[2]=2;
if(n==1||n==2)
{
cout<<f[n];
return 0;
}
for(int i=3;i<=n;i++)
f[i]=f[i-1]+f[i-2];
cout<<f[n];
return 0;
}
大盗阿福
阿福是一名经验丰富的大盗。趁着月黑风高,阿福打算今晚洗劫一条街上的店铺。
这条街上一共有 N 家店铺,每家店中都有一些现金。
阿福事先调查得知,只有当他同时洗劫了两家相邻的店铺时,街上的报警系统才会启动,然后警察就会蜂拥而至。
作为一向谨慎作案的大盗,阿福不愿意冒着被警察追捕的风险行窃。
他想知道,在不惊动警察的情况下,他今晚最多可以得到多少现金?
输入格式
输入的第一行是一个整数 T,表示一共有 T 组数据。
接下来的每组数据,第一行是一个整数 N ,表示一共有 N 家店铺。
第二行是 N 个被空格分开的正整数,表示每一家店铺中的现金数量。
每家店铺中的现金数量均不超过1000。
输出格式
对于每组数据,输出一行。
该行包含一个整数,表示阿福在不惊动警察的情况下可以得到的现金数量。
数据范围
1 ≤ T ≤ 50 , 1 ≤ N ≤ 105 1≤T≤50,1≤N≤1051≤T≤50,1≤N≤105
输入样例:
2
3
1 8 2
4
10 7 6 14
输出样例:
8
24
样例解释
对于第一组样例,阿福选择第2家店铺行窃,获得的现金数量为8。
对于第二组样例,阿福选择第1和4家店铺行窃,获得的现金数量为10+14=24。
#include <iostream>
#include <bits/stdc++.h>
using namespace std;
const int N=100010;
int n,T;
int home[N];
int f[N];
int main()
{
cin>>T;
while(T--)
{
cin>>n;
for(int i=1;i<=n;i++)
cin>>home[i];
memset(f,0,sizeof f);
for(int i=1;i<=n;i++)
f[i+2]=max(f[i+1],f[i]+home[i]);
cout<<f[n+2]<<endl;
}
return 0;
}
数字三角形问题
问题描述:给定一个由n行数字组成的数字三角形,如下图所示,试设计一个算法,计算出从三角形的顶至底的一条路径,使该路径经过的数字总和最大。
7
3 8
8 1 0
2 7 4 4
4 5 2 6 5
算法设计:对于给定的由n行数字组成的数字三角形,计算从三角形的顶至底的路径经过的数字和的最大值。
输入格式:
第1行是数字三角形的行数n,接下来n行是数字三角形各行中的数字。
输出格式:
数字和的最大值
实例:
输入:
5
7
3 8
8 1 0
2 7 4 4
4 5 2 6 5
输出:
30
#include <iostream>
#include <bits/stdc++.h>
using namespace std;
const int N=1010;
int n;
int g[N][N];
int f[N][N];
int main()
{
cin>>n;
for(int i=1;i<=n;i++)
{
for(int j=1;j<=i;j++)
cin>>g[i][j];
}
for(int i=n;i>=1;i--)
for(int j=1;j<=n;j++)
{f[i][j]=max(f[i+1][j],f[i+1][j+1])+g[i][j];}
cout<<f[1][1]<<endl;
return 0;
}
01背包问题
有 N 件物品和一个容量是 V 的背包。每件物品只能使用一次。
第 i件物品的体积是 vi,价值是 wi。
求解将哪些物品装入背包,可使这些物品的总体积不超过背包容量,且总价值最大。
输出最大价值。
输入格式
第一行两个整数,N,V,用空格隔开,分别表示物品数量和背包容积。
接下来有 N 行,每行两个整数 vi,wi,用空格隔开,分别表示第 i 件物品的体积和价值。
输出格式
输出一个整数,表示最大价值。
数据范围
0<N,V≤1000
0<vi,wi≤1000
输入样例
解释
4 5
1 2
2 4
3 4
4 5
输出样例:
8
#include <iostream>
#include <bits/stdc++.h>
using namespace std;
const int N=1010;
int n,m;
int v[N],w[N];
int f[N][N];
int main()
{
cin>>n>>m;
for(int i=1;i<=n;i++)
cin>>v[i]>>w[i];
for(int i=1;i<=n;i++)
{
for(int j=0;j<=m;j++)
{
if(j<v[i]) f[i][j]=f[i-1][j];
else if(j>=v[i])
f[i][j]=max(f[i-1][j],f[i-1][j-v[i]]+w[i]);
}
}
cout<<f[n][m]<<endl;
return 0;
}