22蓝桥杯动态规划入门

跳台阶

一个楼梯共有 n 级台阶,每次可以走一级或者两级,问从第 00级台阶走到第 n 级台阶一共有多少种方案。

输入格式

共一行,包含一个整数 n。

输出格式

共一行,包含一个整数,表示方案数。

数据范围

1≤n≤15

输入样例:

5

输出样例:

8

#include <iostream>

using namespace std;
const int N=20;
int n;
int f[N];
int main()
{
    cin>>n;
    f[1]=1,f[2]=2;
    if(n==1||n==2)
    {
        cout<<f[n];
        return 0;
    }
    for(int i=3;i<=n;i++)
        f[i]=f[i-1]+f[i-2];
    cout<<f[n];
    return 0;
}

大盗阿福

阿福是一名经验丰富的大盗。趁着月黑风高,阿福打算今晚洗劫一条街上的店铺。
这条街上一共有 N 家店铺,每家店中都有一些现金。
阿福事先调查得知,只有当他同时洗劫了两家相邻的店铺时,街上的报警系统才会启动,然后警察就会蜂拥而至。
作为一向谨慎作案的大盗,阿福不愿意冒着被警察追捕的风险行窃。
他想知道,在不惊动警察的情况下,他今晚最多可以得到多少现金?

输入格式

输入的第一行是一个整数 T,表示一共有 T 组数据。

接下来的每组数据,第一行是一个整数 N ,表示一共有 N 家店铺。

第二行是 N 个被空格分开的正整数,表示每一家店铺中的现金数量。

每家店铺中的现金数量均不超过1000。

输出格式

对于每组数据,输出一行。

该行包含一个整数,表示阿福在不惊动警察的情况下可以得到的现金数量。

数据范围


1 ≤ T ≤ 50 , 1 ≤ N ≤ 105 1≤T≤50,1≤N≤1051≤T≤50,1≤N≤105

输入样例:
2
3
1 8 2
4
10 7 6 14

输出样例:
8
24

样例解释
对于第一组样例,阿福选择第2家店铺行窃,获得的现金数量为8。

对于第二组样例,阿福选择第1和4家店铺行窃,获得的现金数量为10+14=24。

#include <iostream>
#include <bits/stdc++.h>
using namespace std;
const int N=100010;
int n,T;
int home[N];
int f[N];

int main()
{
    cin>>T;
    while(T--)
    {
        cin>>n;
        for(int i=1;i<=n;i++)
            cin>>home[i];
        memset(f,0,sizeof f);
        for(int i=1;i<=n;i++)
            f[i+2]=max(f[i+1],f[i]+home[i]);
        cout<<f[n+2]<<endl;
    }
    return 0;
}

数字三角形问题

问题描述:给定一个由n行数字组成的数字三角形,如下图所示,试设计一个算法,计算出从三角形的顶至底的一条路径,使该路径经过的数字总和最大。

        7

      3  8

    8  1  0

  2  7  4  4

4  5  2  6  5

算法设计:对于给定的由n行数字组成的数字三角形,计算从三角形的顶至底的路径经过的数字和的最大值。

输入格式:

第1行是数字三角形的行数n,接下来n行是数字三角形各行中的数字。

输出格式:

数字和的最大值

实例:

输入:

5

7

3 8

8 1 0

2 7 4 4

4 5 2 6 5

输出:

30

#include <iostream>
#include <bits/stdc++.h>
using namespace std;

const int N=1010;

int n;
int g[N][N];
int f[N][N];
int main()
{
    cin>>n;
    for(int i=1;i<=n;i++)
    {
        for(int j=1;j<=i;j++)
            cin>>g[i][j];
    }
    for(int i=n;i>=1;i--)
        for(int j=1;j<=n;j++)
            {f[i][j]=max(f[i+1][j],f[i+1][j+1])+g[i][j];}
    cout<<f[1][1]<<endl;
    return 0;
}

01背包问题

有 N 件物品和一个容量是 V 的背包。每件物品只能使用一次。

第 i件物品的体积是 vi,价值是 wi。

求解将哪些物品装入背包,可使这些物品的总体积不超过背包容量,且总价值最大。
输出最大价值。

输入格式

第一行两个整数,N,V,用空格隔开,分别表示物品数量和背包容积。

接下来有 N 行,每行两个整数 vi,wi,用空格隔开,分别表示第 i 件物品的体积和价值。

输出格式

输出一个整数,表示最大价值。

数据范围

0<N,V≤1000
0<vi,wi≤1000

输入样例

解释

4 5

1 2

2 4

3 4

4 5

输出样例:

8

#include <iostream>
#include <bits/stdc++.h>
using namespace std;

const int N=1010;

int n,m;
int v[N],w[N];
int f[N][N];
int main()
{
    cin>>n>>m;
    for(int i=1;i<=n;i++)
        cin>>v[i]>>w[i];
    for(int i=1;i<=n;i++)
    {
        for(int j=0;j<=m;j++)
        {
            if(j<v[i]) f[i][j]=f[i-1][j];
            else if(j>=v[i])
                f[i][j]=max(f[i-1][j],f[i-1][j-v[i]]+w[i]);
        }
    }
    cout<<f[n][m]<<endl;
    return 0;
}

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值