算法(蓝桥杯)贪心算法6——均分纸牌问题的解题思路与代码实现

题目描述

有 n 堆纸牌(2≤n≤200),排成一行,编号分别为 1, 2, ..., n。已知每堆纸牌有一定的张数,且张数之和均为 n 的倍数。移动各堆中的任意张纸牌,使每堆的数量达到相同,且移动次数最少。

移动规则:

  • 每次可以移动任意的张数。

  • 第 1 堆可以移向第 2 堆,第 2 堆可以移向第 1 堆或第 3 堆,…,第 n 堆只可以移向第 n−1 堆。

例如,当 n=4 时:

复制

堆号      1     2     3     4
张数      3     5     4     8

移动的方法有许多种,其中的一种方案:

  1. 第 2 堆向第 1 堆移动 2 张,成为:5 3 4 8。

  2. 第 4 堆向第 3 堆移动 3 张,成为:5 3 7 5。

  3. 第 3 堆向第 2 堆移动 2 张,成为:5 5 5 5。

经过三次移动,每堆都成为 5 张。

解题思路

1. 计算目标数量

首先,我们需要计算每堆纸牌的目标数量。由于所有纸牌的总数量是 n 的倍数,我们可以将总数量除以 n 得到目标数量。

2. 从左到右依次调整

从左到右依次处理每一堆纸牌,确保每一堆纸牌的数量达到目标数量。具体步骤如下:

  • 计算当前堆需要移动的纸牌数量。

  • 如果当前堆的纸牌数量多于目标数量,则将多余的纸牌移动到下一堆。

  • 如果当前堆的纸牌数量少于目标数量,则从下一堆移动纸牌到当前堆。

  • 记录每次移动的操作次数。

3. 代码实现

根据上述思路,我们可以编写如下代码:

Python复制

def min_moves_to_equalize_piles(piles):
    """
    计算使每堆纸牌数量相同的最小移动次数
    :param piles: 每堆纸牌的数量列表
    :return: 最小移动次数
    """
    n = len(piles)
    target = sum(piles) // n  # 计算目标数量
    moves = 0  # 记录移动次数

    for i in range(n - 1):
        # 计算当前堆需要移动的纸牌数量
        diff = piles[i] - target
        # 更新当前堆的数量
        piles[i] -= diff
        # 更新下一堆的数量
        piles[i + 1] += diff
        # 记录移动次数
        if diff != 0:
            moves += 1

    return moves


# 示例
n=int(input())
piles=[int(i) for i in input().split()]
print(min_moves_to_equalize_piles(piles))  # 输出:3

4. 示例解释

piles = [3, 5, 4, 8] 为例,详细说明每一步的操作:

  1. 计算目标数量

    • 总数量:3 + 5 + 4 + 8 = 20

    • 目标数量:20 // 4 = 5

  2. 从左到右依次调整

    • 第1堆3,目标数量 5

      • 需要移动的纸牌数量:3 - 5 = -2

      • 更新第1堆:3 - (-2) = 5

      • 更新第2堆:5 + (-2) = 3

      • 移动次数:1

    • 第2堆3,目标数量 5

      • 需要移动的纸牌数量:3 - 5 = -2

      • 更新第2堆:3 - (-2) = 5

      • 更新第3堆:4 + (-2) = 2

      • 移动次数:2

    • 第3堆2,目标数量 5

      • 需要移动的纸牌数量:2 - 5 = -3

      • 更新第3堆:2 - (-3) = 5

      • 更新第4堆:8 + (-3) = 5

      • 移动次数:3

最终,每堆纸牌的数量都变成了 5,移动次数为 3

5. 总结

通过从左到右依次调整每一堆纸牌的数量,确保每一堆纸牌的数量达到目标数量,可以有效地找到使每堆纸牌数量相同的最小移动次数。这种方法的时间复杂度为 O(n),其中 n 是堆数,因为每个堆只会被处理一次。希望这个解释能帮助你更好地理解这个问题的解法。如果有任何疑问,欢迎继续提问。

脑洞思维 

1. 问题分析

首先,我们需要明确问题的目标:使每堆纸牌的数量相同,并且移动次数最少。这个问题的关键在于如何高效地调整每堆纸牌的数量,使得总移动次数最小。

2. 计算目标数量

这个问题的一个重要特性是所有纸牌的总数量是堆数 n 的倍数。这意味着我们可以将总数量均匀分配到每一堆中。因此,计算目标数量是解决问题的第一步。这个目标数量是每堆纸牌最终应该达到的数量。

3. 从左到右依次调整

接下来,我们需要考虑如何调整每堆纸牌的数量。一个直观的想法是从左到右依次处理每一堆,确保每一堆的数量达到目标数量。这样做的好处是每次调整只影响当前堆和下一堆,不会对其他堆产生影响。

3.1 为什么从左到右?

从左到右处理每一堆纸牌的原因是,我们可以逐步将多余的纸牌移动到下一堆,或者从下一堆获取不足的纸牌。这样可以确保每一步的调整都是局部的,不会影响到已经处理过的堆。这种方法类似于动态规划中的局部最优解,通过逐步构建局部最优解来达到全局最优解。

3.2 为什么每次只处理当前堆和下一堆?

每次只处理当前堆和下一堆的原因是,这样可以确保每次调整都是最小的。如果同时考虑多堆纸牌,调整会变得复杂且难以控制。通过每次只处理当前堆和下一堆,我们可以确保每一步的调整都是必要的,并且移动次数最少。

4. 记录移动次数

在调整过程中,我们需要记录每次移动的操作次数。这可以通过一个简单的计数器实现。每次进行调整时,计数器增加1。这样可以确保我们最终得到的移动次数是最小的。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

m0_dawn

谢谢老板~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值