题目描述
有 n 堆纸牌(2≤n≤200),排成一行,编号分别为 1, 2, ..., n。已知每堆纸牌有一定的张数,且张数之和均为 n 的倍数。移动各堆中的任意张纸牌,使每堆的数量达到相同,且移动次数最少。
移动规则:
每次可以移动任意的张数。
第 1 堆可以移向第 2 堆,第 2 堆可以移向第 1 堆或第 3 堆,…,第 n 堆只可以移向第 n−1 堆。
例如,当 n=4 时:
复制
堆号 1 2 3 4 张数 3 5 4 8
移动的方法有许多种,其中的一种方案:
第 2 堆向第 1 堆移动 2 张,成为:5 3 4 8。
第 4 堆向第 3 堆移动 3 张,成为:5 3 7 5。
第 3 堆向第 2 堆移动 2 张,成为:5 5 5 5。
经过三次移动,每堆都成为 5 张。
解题思路
1. 计算目标数量
首先,我们需要计算每堆纸牌的目标数量。由于所有纸牌的总数量是 n 的倍数,我们可以将总数量除以 n 得到目标数量。
2. 从左到右依次调整
从左到右依次处理每一堆纸牌,确保每一堆纸牌的数量达到目标数量。具体步骤如下:
计算当前堆需要移动的纸牌数量。
如果当前堆的纸牌数量多于目标数量,则将多余的纸牌移动到下一堆。
如果当前堆的纸牌数量少于目标数量,则从下一堆移动纸牌到当前堆。
记录每次移动的操作次数。
3. 代码实现
根据上述思路,我们可以编写如下代码:
Python复制
def min_moves_to_equalize_piles(piles): """ 计算使每堆纸牌数量相同的最小移动次数 :param piles: 每堆纸牌的数量列表 :return: 最小移动次数 """ n = len(piles) target = sum(piles) // n # 计算目标数量 moves = 0 # 记录移动次数 for i in range(n - 1): # 计算当前堆需要移动的纸牌数量 diff = piles[i] - target # 更新当前堆的数量 piles[i] -= diff # 更新下一堆的数量 piles[i + 1] += diff # 记录移动次数 if diff != 0: moves += 1 return moves # 示例 n=int(input()) piles=[int(i) for i in input().split()] print(min_moves_to_equalize_piles(piles)) # 输出:3
4. 示例解释
以
piles = [3, 5, 4, 8]
为例,详细说明每一步的操作:
计算目标数量:
总数量:
3 + 5 + 4 + 8 = 20
目标数量:
20 // 4 = 5
从左到右依次调整:
第1堆:
3
,目标数量5
需要移动的纸牌数量:
3 - 5 = -2
更新第1堆:
3 - (-2) = 5
更新第2堆:
5 + (-2) = 3
移动次数:
1
第2堆:
3
,目标数量5
需要移动的纸牌数量:
3 - 5 = -2
更新第2堆:
3 - (-2) = 5
更新第3堆:
4 + (-2) = 2
移动次数:
2
第3堆:
2
,目标数量5
需要移动的纸牌数量:
2 - 5 = -3
更新第3堆:
2 - (-3) = 5
更新第4堆:
8 + (-3) = 5
移动次数:
3
最终,每堆纸牌的数量都变成了
5
,移动次数为3
。5. 总结
通过从左到右依次调整每一堆纸牌的数量,确保每一堆纸牌的数量达到目标数量,可以有效地找到使每堆纸牌数量相同的最小移动次数。这种方法的时间复杂度为 O(n),其中 n 是堆数,因为每个堆只会被处理一次。希望这个解释能帮助你更好地理解这个问题的解法。如果有任何疑问,欢迎继续提问。
脑洞思维
1. 问题分析
首先,我们需要明确问题的目标:使每堆纸牌的数量相同,并且移动次数最少。这个问题的关键在于如何高效地调整每堆纸牌的数量,使得总移动次数最小。
2. 计算目标数量
这个问题的一个重要特性是所有纸牌的总数量是堆数 n 的倍数。这意味着我们可以将总数量均匀分配到每一堆中。因此,计算目标数量是解决问题的第一步。这个目标数量是每堆纸牌最终应该达到的数量。
3. 从左到右依次调整
接下来,我们需要考虑如何调整每堆纸牌的数量。一个直观的想法是从左到右依次处理每一堆,确保每一堆的数量达到目标数量。这样做的好处是每次调整只影响当前堆和下一堆,不会对其他堆产生影响。
3.1 为什么从左到右?
从左到右处理每一堆纸牌的原因是,我们可以逐步将多余的纸牌移动到下一堆,或者从下一堆获取不足的纸牌。这样可以确保每一步的调整都是局部的,不会影响到已经处理过的堆。这种方法类似于动态规划中的局部最优解,通过逐步构建局部最优解来达到全局最优解。
3.2 为什么每次只处理当前堆和下一堆?
每次只处理当前堆和下一堆的原因是,这样可以确保每次调整都是最小的。如果同时考虑多堆纸牌,调整会变得复杂且难以控制。通过每次只处理当前堆和下一堆,我们可以确保每一步的调整都是必要的,并且移动次数最少。
4. 记录移动次数
在调整过程中,我们需要记录每次移动的操作次数。这可以通过一个简单的计数器实现。每次进行调整时,计数器增加1。这样可以确保我们最终得到的移动次数是最小的。