数学建模的论文手应该如何准备?

本文指导如何准备数学建模论文,包括文章结构的详细规划、时间管理、团队协作的重要性,以及如何处理问题重述、模型假设和参考文献的引用。特别强调了模型的建立过程和论文写作策略,如使用LaTeX和公式编辑软件,以及合理的时间分配和实时文献管理。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

写论文的争议点


数学建模的时间通常非常紧张,国赛是三天时间,美赛一般是五天时间左右,因此在这短短时间内确保论文准确性和科学性是不现实的。建模比赛目的就在于体会建模的乐趣,锻炼建模的能力。

论文手只管写作?建模手和编程手不用关注写作?

写论文不是论文手一个人的事情,而是所以队员都需要参与其中。如果论文手没有参与建模的讨论和建立的过程,如果建模手没有清楚地将建模过程表述出来,如果编程手没有对算法的思想以及代码的逻辑描述清楚,论文基本上就不可能完成。所以在有限时间内,每个队员都需要写作,边做边写,将整个建模的过程大致保留下来。

是否需要将问题讨论清楚之后再开始论文书写呢?

其实这种观点是错误的,通常对于建模问题的讨论将会贯穿整个比赛时间,从选题结束后,我们就需要开始针对该问题最快的找出解决方案,这个时候先别关注细节问题,然后马上进行建模工作,在建模过程中不断的进行修正。
论文手呢就可以开始搜相关资料文献,比如,找出题目中陌生、专业术语的意思;然后分析题目中各个问题以及他们之间的联系,大致可以用哪些方法来解决;查阅相关文献的主要来源就是中国知网论文的水平关键看参考文献的水平;如果是找专业的数据要到一些官方网站去找(人口数量、收入之类的可以到中国国家(地方)统计局,中国卫生局这样的地方去找。)

论文如何构建


多看看历年获奖论文,学习它们的写作思路和表达方式。
可以看看另一篇优质文章

1. 文章结构

1.1 摘要

摘要是全文最重要的部分,评卷的时候第一轮只是看摘要,其他的部分写得再好都看不到的,摘要的写法应该多学习优秀论文,看他们的摘要都是如何写的。
摘要一般包括:
模型的数学归类(在数学上属于什么类型);
建模的思想(思路);算法思想(求解思路);
建模特点(模型优点,建模思想或方法,算法特点,灵敏度分析,模型检验;
主要结果(数值结果,结论)(要求逐一回答题目所提的全部“问题”)
内容要包括你 用什么方法,解决了什么样的问题,得到什么结论,这个结论说明了什么?
关键词::关键词一般3 – 5个左右,涉及论文的关键概念,给人们提供思考的线索。

1.2 问题重述

根据本组对题目的理解,明确题目需要解决的问题。问题的重述尽管来自题目,但不是抄写题目,特别是背景说明要简洁,问题的提出要简洁,严禁把大量背景材料放进来
常用的套路是:
××××××是××,研究××具有一定现实意义。根据题目要求,需要解决以下几个问题:(1),(2),….

1.3 问题分析

对问题进行必要的分析,提供本组解决问题的主要思路及大致方法。特别是为研究问题本组提出的创新性概念、思想、解决方法等。简单说明解决每个问题的框架
问题分析一般要针对题目要求逐一分析,要将本问题的难点,关键、困难和本组解决思路、创新点提出来。
常用套路是:
问题一要求…,对于此问题,我们认为关键是…,为了解决本问题,我们拟采用…,有时候要指出模型的数学归类:我们认为该问题本质是一个…问题。

1.4 模型假设

模型假设建模论文的重要组成部分。 实际生活中的问题往往非常复杂,不利于模型的建立和求解。因此需要对许多情况进行简化处理,得到理想化的假设。在解决问题的过程中,要求准确理解题目及其每个概念的意思,对使用的理论、给出的说法要有依据。但是有些关键信息题目没有提供或事实上因涉密或其它原因难以获得,但解决题目又必须给出,为此就需要通过假设的方法给出,有些影响建模的关键条件尽管题目已经给出,但也要通过假设加以明确。

1.5 符号说明

对文章中将要出现的符号及变量给予详细的说明,以便读者阅读论文时回来查看符号的意思,通常通过列表形式给出。尽管此处给出了符号说明,但在论文中第一次出现的时候还是必须予以说明

1.6 模型的建立与求解

这里需要逐一对问题进行建模和求解,首先是模型准备,将问题的要求条件结论等进行抽象分析,转化为一个数学问题。==每个问题开始建模求解时需要呼应题目,展示思路,每个问题结束时要有总结。

关于模型

对于基本模型要有数学模型:数学公式、方案等,要求完整,正确,简明
对于简化模型要明确说明:简化思想,依据; 简化后模型,尽可能完整给出
模型要实用,有效,以解决问题有效为原则。数学建模面临的、要解决的是实际问题,不追求数学上的高(级)、深(刻)、难(度大)。
能用初等方法解决的、就不用高级方法;
’能用简单方法解决的,就不用复杂方法;
能用被更多人看懂、理解的方法,就不用只能少数人看懂、理解的方法。

陈述问题和模型过程中

要求问题分析:中肯、确切;术语:专业、内行;
原理、依据:正确、明确;表述:简明,关键步骤要列出;
要注意不要用外行话,专业术语不明确,表述混乱、繁琐等问题出现。

模型求解

需要说明计算方法或算法的原理、思想、依据、步骤。若采用现有软件,说明采用此软件的理由,软件名称;计算过程,中间结果可要可不要的,不要列出。设法算出合理的数值结果。

1.7 模型的检验分析

最终数值结果的正确性或合理性是第一位的;
题目中要求回答的问题,数值结果,结论,须一并列出;

1.8 模型评价和推广

优点突出,缺点不回避。
推广或改进方向时,不要玩弄新数学术语

1.9 参考文献

引用别人的成果或其他公开的资料(包括网上查到的资料) 必须按照规定的参考文献的表述方式在正文引用处和参考文献中均明确列出。正文引用处用方括号标示参考文献的编号,如[1][3]等;引用书籍还必须指出页码。参考文献按正文中的引用次序列出。

书籍的表述方式为:
[编号] 作者,书名,出版地:出版社,出版年。
参考文献中期刊杂志论文的表述方式为:
[编号] 作者,论文名,杂志名,卷期号:起止页码,出版年。
参考文献中网上资源的表述方式为:
[编号] 作者,资源标题,网址,访问时间(年月日)。

可以使用参考文献生成器

1.10 附录

详细的数据表格、程序可在此列出。
但不要错,错的宁可不列。
主要结果数据,应在正文中列出。

2. 常用软件

2.1 排版软件

  • LaTeX(有精力的可以了解一下)
  • Word(Word转PDF足够了,转完之后记得再检查一下格式)

2.2 公式编辑软件

  • Mathpix
  • Mathtype :所有的数学公式、符号必须用公式编辑器输入,不要修改公式的默认尺寸。
  • AxMath
  • Word自带公式编辑器 :上下行距都会被撑大,可以调整行间距解决。

2.3 流程图软件

  • 亿图
  • Xmind
  • Visio
  • Processon(在线画流程图网站)

时间分配

1)8:00题目下来到第一天下午18:00应该定下题目,到晚上22:00集中查一个题目的文献整理出一个初步的想法,建议第一天晚上要回去睡觉;

2)第二天上午,一起搜集大量的文献后快速浏览找出部分精读文献,到中午的时候聚在一起分析题目,汇总各自看的文献所得出的理解和大致模型,然后定出初步解题的方向。下午就应该分工合作了,写作的人就开始查找一些背景资料,写出模型的初步想法,强调一点在建模的时候用到得文献就要随时记下来,引用方法的时候要把参考文献一同贴上,以便后来查找;建模的人就要专攻一个方向建立模型;而另外一个人仍然要继续查找文献,寻找更新的思路。

3)第二天晚上一般不能睡觉,建模的人正是关键时刻,这一晚上应该做出部分模型,如果问题多的话,要能解决前几个问题;而另外一个人要跟着建模的思路帮着打下手,做些打字、打公式之类的活。

4)第三天就是写作的全面突击了,根据已有的思路和模型,组织语言,参考文献,写出学术性的论文,一般到下午6点应该完成大部分的论文,只是剩下结果和推广的部分;

5)第三天晚上前半夜要完成收尾的工作,把全部的模型和结果都添加到文章中,到12点后就应该写摘要了,建议是所有人每人写一份摘要,然后一起核对研究,最后整理出一份摘要,交给辅导老师看,让老师提出意见再修改,反复多次,直到摘要读起来很流畅,涵盖了所有文章的精华创新点。

6)最后附上附录程序,如果有大量的计算结果也附在附录上。

<think>嗯,用户想要找关于统计建模论文写作的零基础技巧。首先,我需要理清楚用户的具体需求。他们可能是刚接触统计建模的学生,对如何开始写论文毫无头绪,需要从基础步骤开始指导。用户提到的关键词包括统计建模、论文写作、零基础、技巧、教程,所以应该覆盖从选题到结构安排、写作技巧等各个方面。 接下来,我得参考用户提供的引用内容。引用[1]提到了问题背景、模型假设和符号说明,这部分需要强调在论文中如何明确问题和假设。引用[2]讨论了模型假设的合理性和过强假设的处理,这可能涉及到如何验证假设以及改进模型的部分。引用[3]和[4]则关于摘要、结构、关键词等写作要点,这些都是论文的重要组成部分,尤其是摘要的重要性。 用户可能需要一个结构化的指南,分步骤讲解每个部分应该怎么写。比如,从选题开始,如何收集数据,如何建立模型,到如何撰写各个章节。同时,作为零基础教程,可能需要避免使用过于专业的术语,或者至少解释清楚每个步骤的目的和做法。 另外,用户可能还关心如何组织内容,使论文逻辑清晰,符合学术规范。比如,摘要要简洁有力,模型假设要合理,结果部分要有图表支持等。还要注意文献引用和格式问题,确保参考文献正确列出,避免抄袭。 可能还需要提到常见的错误和如何避免,比如假设过强、数据处理不当等,以及如何通过模型检验和灵敏度分析来增强论文的可信度。此外,关于团队合作和时间管理也可能对新有帮助,但用户没有明确提到,可能需要根据引用内容判断是否相关。 最后,用户可能希望有具体的例子或模板,但根据引用内容,可能需要引导他们参考已有的优秀论文或教程。总结起来,回答需要分步骤,涵盖论文的各个部分,结合引用中的要点,给出实用建议,并用简单易懂的语言解释,帮助零基础用户逐步完成统计建模论文的写作。</think>### 统计建模论文写作零基础技巧指南 #### 一、基础准备阶段 1. **明确问题与目标** 通过文献调研和数据收集,确定统计建模的核心问题,例如:“如何预测某地区房价波动?”需明确建模目的(预测、分类、因果推断等)[^1]。 2. **数据收集与预处理** - 数据来源需标注清晰(如公开数据库、实验采集) - 处理缺失值、异常值,标准化或归一化数据 - 使用可视化工具(如箱线图、散点图)初步探索数据分布 3. **模型类型选择** 根据问题特点选择模型,例如: - 预测类:线性回归、时间序列$y_t = \beta_0 + \beta_1 x_t + \epsilon_t$ - 分类类:逻辑回归、决策树 - 复杂关系:随机森林、神经网络 #### 二、论文核心结构搭建 1. **摘要写作要点** - 用200-300字概括研究问题、方法、创新点和结论 - 示例结构: > “针对XX问题,提出基于XX模型的解决方案,采用XX算法实现。实验表明模型准确率达XX%,较传统方法提升XX%”[^3] 2. **模型假设与符号说明** - 列表说明假设条件(如数据独立同分布、误差项正态性) - 建立符号表: $$ \begin{array}{ll} X & \text{自变量矩阵} \\ \beta & \text{回归系数向量} \end{array} $$ 引用文献支持假设合理性[^2] 3. **模型建立与求解** - 推导关键公式,例如逻辑回归的几率比: $$ \ln\left(\frac{p}{1-p}\right) = \beta^T X $$ - 代码片段展示(Python示例): ```python from sklearn.linear_model import LogisticRegression model = LogisticRegression().fit(X_train, y_train) ``` 4. **结果分析与验证** - 使用混淆矩阵、ROC曲线等工具评估模型 - 对比基准模型(如准确率提升5%) - 灵敏度分析:扰动输入参数观察结果变化 #### 三、提升论文质量的技巧 1. **图表规范** - 表格使用三线表,图表需有编号和标题 - 示例:图1 变量相关性热力图 2. **避免常见错误** - 假设过强时补充说明(如“本模型暂未考虑XX因素,将在后续研究完善”) - 模型复杂度与解释性需平衡 3. **参考文献管理** - 使用EndNote/Zotero管理文献 - 格式示例: > [1] Author A. Title[J]. Journal Name, 2023, 10(2): 100-120. #### 四、学习路径建议 1. **工具速成** - 统计软件:R语言(`ggplot2`绘图)、Python(`pandas`数据处理) - 公式编辑:LaTeX公式语法: ```latex \begin{equation} \hat{Y} = X\beta + \epsilon \end{equation} ``` 2. **经典文献研读** 推荐阅读《The Elements of Statistical Learning》第2章(线性模型基础)
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值