class Solution {
public:
int coinChange(vector<int>& coins, int amount) {
vector<int> dp(amount + 1, INT_MAX);//凑成总金额为j 所需要最少的硬币数量
dp[0]=0;
for(int i=0;i<coins.size();i++){
for(int j=coins[i];j<=amount;j++){
if (dp[j - coins[i]] != INT_MAX)
dp[j]=min(dp[j],dp[j-coins[i]]+1);
}
}
if(dp[amount]==INT_MAX)
return -1;
return dp[amount];
}
};
// 版本二
class Solution {
public:
int numSquares(int n) {
vector<int> dp(n + 1, INT_MAX);
dp[0] = 0;
for (int i = 1; i * i <= n; i++) { // 遍历物品
for (int j = i * i; j <= n; j++) { // 遍历背包
dp[j] = min(dp[j - i * i] + 1, dp[j]);
}
}
return dp[n];
}
};
class Solution {
public:
bool wordBreak(string s, vector<string>& wordDict) {
unordered_set<string> wordSet(wordDict.begin(), wordDict.end());
vector<bool> dp(s.size() + 1, false);
dp[0] = true;
for (int j = 0; j < wordDict.size(); j++) { // 物品
for (int i = wordDict[j].size(); i <= s.size(); i++) { // 背包
string word = s.substr(i - wordDict[j].size(), wordDict[j].size());
// cout << word << endl;
if ( word == wordDict[j] && dp[i - wordDict[j].size()]) {
dp[i] = true;
}
// for (int k = 0; k <= s.size(); k++) cout << dp[k] << " "; //这里打印 dp数组的情况
// cout << endl;
}
}
return dp[s.size()];
}
};
总结:完全背包 观察情况如果是 排列问题先遍历背包再遍历物品 使得每一种情况都有 组合问题像便利物品 再遍历背包 否则会多计数 本体必须是排列问题 因为根据dp的结果 每个单词都必须遍历一遍 要不然有的dp为false