专注于医学领域的MedNeXt

四个特点

纯ConvNetXt的SD分割架构

采用ConvNeXt的设计来改进3D-UNet的宏观框架

将ConvNeXt块扩展到上采样层和下采样层

纯卷积,保留了ConVNeXt的归纳偏差,可轻松对稀疏医学图像进行训练

Depthwise Convolution Layer:包含一个内核大小为k*k*k的深度可分离卷积,然后是归一化,具有C个输出通道

Expansion Layer:包含一个带有CR通道的过完备卷积层,R是扩展率,由GELU激活。该层有效的将宽度有效地缩放与上一层感受野缩放分离

Compression Layer:具有1×1×1卷积核和C 输出通道数的卷积层,对特征图执行逐通道的压缩

使用残差倒置瓶颈进行重采样

由于ConvNeXt的重采样层是跨步卷积,这种设计无法实现缩放,MedNeXt将倒置瓶颈扩展到重采样块实现缩放。

UpKern:不饱和的大核卷积

医学分割任务数据少,性能容易饱和,MedNeXt借鉴Swin Transformer V2的灵感(使用预训练的小窗口网络来初始化大窗口网络),通过对预训练的小核网络进行三线性上采样来初始化大核网络,从而迭代的增加核大小,其它大小相同的层直接复制预训练的权重来初始化。

深度、宽度、和感受野的复合缩放

复合缩放是指在多个级别(深度、宽度、感受野、分辨率等)上同时缩放,在自然图像处理领域,很多模型可以根据任务性质和数据灵活量缩放模型,而在医学图像处理领域,一直没有能够缩放的模型。

MedNeXt测试了对block数(B)、扩展率(R)、内核大小(k)进行缩放,研究了这些参数对应的深度、宽度和感受野大小

实验

配置

使用pytorch搭建,使用两种卷积核大小的MedNeXt的四种配置进行实验

基线

使用7个基线来对比,分别是1个高性能的卷积网络nnUNet,4个卷积-变压器混合网络UNETR、SwinUNETR、TransBTS、TransUNet,1个纯Transformer网络,nnFormer以及1个非完全ConvNeXt 网络3D -UX-Net

数据集

Beyond-the-Cranial-Vault(BTCV)腹部CT器官分割

AMOS22腹部CT分割

肾脏肿瘤分割挑战2019数据集(KiTS19)

脑肿瘤分割挑战(BraTS21)

结果

框架改进的性能消融

普通ConvNeXt不能够直接使用

在实验中观察到以下三点:

Residual Inverted Bottlenecks,使MedNeXt能够用于医学图像分割。没有Residual Inverted Bottlenecks则会使性能显著下降。

为医学图像分割训练大核网络是很必要的,UpKern在BTCV和AMOS22上内核性能得到提高

大内核的性能提升被认为是由UpKern与更大内核的结合

这三点说说明MedNeXt修改成功将ConvNeXt框架转化为医学图像分割模型

性能对比

MedNeXt在性能上超越了现有的SOTA们,实现了遥遥领先

结论

MedNeXt专门为在有限的医学图像数据集上实现高性能而定制,是专注于医学领域的高性能模型。

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值