SiLU激活函数讲解

介绍

SiLU(sigmoid Linear Unit)激活函数,又称Swish激活函数,是近年来提出的一种新型激活函数。它的定义是输入乘以其sigmoid函数值:

SiLU(x) = x\cdot \sigma (x)

其中\sigma (x)是sigmoid函数:
\sigma (x) =\frac{1}{1+{e}-x}

SiLU 的性质和优点

  1. 平滑性:SiLU 是一个平滑的函数,其输出值是连续且可导的,这有助于梯度下降算法在优化过程中稳定更新参数。

  2. 非线性:SiLU 引入了非线性变换,使其能够捕捉复杂的数据模式。相比 ReLU 等传统激活函数,SiLU 在某些任务上表现出色。

  3. 自正则化:SiLU 的输出值可以自适应地缩放输入值,类似于自正则化的效果。这可能有助于减少过拟合。

  4. 无零输出区域:与 ReLU 不同,SiLU 不存在零输

在YOLOv8中,可以通过改变激活函数来改进网络的性能。其中一种改进的激活函数是GELU(Gaussian Error Linear Units)。GELU是一种非线性激活函数,它在深度学习中被广泛使用。它的定义为: GELU(x) = 0.5 * x * (1 + tanh(√(2/π) * (x + 0.044715 * x^3))) 另外,在YOLOv8中还使用了一个名为nn.SiLU()的激活函数,它也被称为Swish函数,是由Google Brain的研究人员提出的一种激活函数。它的定义为: SiLU(x) = x * sigmoid(x) 这两种激活函数都可以用于YOLOv8的网络中,以提高网络的性能和准确性。具体来说,可以通过在网络的相应层中替换激活函数为GELU或nn.SiLU()来实现。这样可以增加网络的非线性能力,提高模型的表达能力,从而提高检测的准确性和性能。 因此,如果要在YOLOv8中改变激活函数,可以选择使用GELU或nn.SiLU()来替代原有的激活函数,以改进网络的性能。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* [【YOLOv8/YOLOv7/YOLOv5/YOLOv4/Faster-rcnn系列算法改进NO.59】引入ASPP模块](https://blog.csdn.net/m0_70388905/article/details/129492136)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"] - *2* *3* [YOLOv8讲解](https://blog.csdn.net/qq_39125451/article/details/131253907)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值