【问题】:矩阵链乘问题:给定n个矩阵{A1,A2,...,An},其中Ai与Ai+1是可乘的,i=1,2...,n-1。如何确定计算矩阵连乘积的计算次序,使得依此次序计算矩阵连乘积需要的数乘次数最少。
1、按设计动态规划算法的步骤解题。
(1)找出最优解的性质,并刻划其结构特征。
(2)递归地定义最优值。
(3)以自底向上的方式计算出最优值。
(4)根据计算最优值时得到的信息,构造最优解(由子结构的最优解得到原先大问题的最优解)。
2、求算法的时间复杂性,和空间复杂性
3、体会动态规划和穷举法在解决该问题中的本质差异。
问题辅助分析:
(1)问题的描述
给定n个矩阵{A1,A2,…,An},其中Ai与Ai+1是可乘的,i=1,2,…,n-1。要算出这n个矩阵的连乘积A1A2…An。由于矩阵乘法满足结合律,故计算矩阵的连乘积可以有许多不同的计算次序。这种计算次序可以用加括号的方式来确定。若一个矩阵连乘积的计算次序完全确定,也就是说该连乘积已完全加括号,则可以依此次序反复调用2个矩阵相乘的标准算法计算出矩阵连乘积。
完全加括号的矩阵连乘积可递归地定义为: (1)单个矩阵是完全加括号的; (2)矩阵连乘积A是完全加括号的,则A可表示为2个完全加括号的矩阵连乘积B和C的乘积并加括号,即A=(BC)。
例如,矩阵连乘积A1A2A3A4有5种不同的完全加括号的方式:(A1(A2(A3A4))),(A1((A2A3)A4)),((A1A2)(A3A4)),((A1(A2A3))A4),(((A1A2)A3)A4)。每一种完全加括号的方式对应于一个矩阵连乘积的计算次序,这决定着作乘积所需要的计算量。若A是一个p×q矩阵,B是一个q×r矩阵,则计算其乘积C=AB的标准算法中,需要进行pqr次数乘。
为了说明在计算矩阵连乘积时,加括号方式对整个计算量的影响,先考察3个矩阵{A1,A2,A3}连乘的情况。设这三个矩阵的维数分别为10×100,100×5,5×50。加括号的方式只有两种:((A1A2)A3),(A1(A2A3)),第一种方式需要的数乘次数为10×100×5+10×5×50=7500,第二种方式需要的数乘次数为100×5×50+10×100×50=75000。第二种加括号方式的计算量时第一种方式计算量的10倍。由此可见,在计算矩阵连乘积时,加括号方式,即计算次序对计算量有很大的影响。于是,自然提出矩阵连乘积的最优计算次序问题,即对于给定的相继n个矩阵{A1,A2,…,An}(其中矩阵Ai的维数为pi-1×pi,i=1,2,…,n),如何确定计算矩阵连乘积A1A2…An的计算次序(完全加括号方式),使得依此次序计算矩阵连乘积需要的数乘次数最少。
穷举搜索法的计算量太大,它不是一个有效的算法,本实验采用动态规划算法解矩阵连乘积的最优计算次序问题。
(2)算法设计思想
动态规划算法的基本思想是将待求解问题分成若干个子问题,先求解子问题,然后从这些子问题的解得到原问题的解。与分治法不同的是,动态规划法经分解得到的子问题往往不是相互独立的,前一子问题的解为后一子问题的解提供有用的信息,可以用一个表来记录所有已解决的子问题的答案,不管该子问题以后是否被用到,只要它被计算过,就将其结果填入表中。
//求出矩阵A[i:j]的最少数乘次数m[i][j],和记录矩阵A[i:j]此时的断开位置s[i][j]
//p为输入的矩阵的行数或列数。n为矩阵个数。m[i][j]为矩阵A[i:j]最少乘法次数。 s[i][j]为当最少乘法次数时,记录此时的断开位置(即加括号的位置)
void MatrixChain(int *p,int n,int m[][100],int s[][100])
{
for (int i = 1; i <= n; i++) m[i][i] = 0; //初始化单个矩阵的乘法次数都为0次。使用矩阵的下标从1,1开始
for (int r = 2; r <= n; r++) //r为矩阵连乘的长度,即矩阵个数
for (int i = 1; i <= n - r+1; i++) { //i为矩阵连乘的起点
int j=i+r-1; //j为矩阵连乘的终点
m[i][j] = m[i][i]+ m[i+1][j]+ p[i-1]*p[i]*p[j];
s[i][j] = i;
for (int k = i+1; k < j; k++) { //找出更优的乘法次数
int t = m[i][k] + m[k+1][j] + p[i-1]*p[k]*p[j];
if (t < m[i][j]) { m[i][j] = t; s[i][j] = k;}
}
}
}
//利用断开位置s[i][j]输出矩阵A[i:j]的最优加括号方式
void print_optimal(int s[100][100], int i ,int j, int a[])
{
if(i==j) cout<<" A["<<a[i-1]<<","<<a[i]<<"]";
else{
cout<<" ( ";
print_optimal(s,i,s[i][j],a);
print_optimal(s,s[i][j]+1,j,a);
cout<<" ) ";
}
}
#include<iostream>
using namespace std;
#include <iomanip>
#define MAX 100
int m[MAX][MAX];
int s[MAX][MAX];
void cout_m(int m[][100], int n) {
cout << "m矩阵:" << endl << setw(10);
for (int i = 1; i < n + 1; i++)
{
for (int j = 1; j < n + 1; j++)
{
int x = m[i][j];
cout << m[i][j] << setw(10);
}
cout << endl;
}
}
void cout_s(int s[][100], int n) {
cout << "s矩阵" << endl << setw(10);;
for (int i = 1; i <= n; i++) {
for (int j = 1; j <= n; j++)
{
cout << s[i][j] << setw(10);
}
cout << endl;
}
}
void MatrixChain(int* p, int n, int m[][100], int s[][100]) {
for (int i = 1; i <= n; i++) {
m[i][i] = 0;
}
for (int r = 2; r <= n; r++)
{
for (int i = 1; i <= n - r + 1; i++)
{
int j = i + r - 1;
m[i][j] = m[i][i] + m[i + 1][j] + p[i - 1] * p[i] * p[j];
s[i][j] = i;
for (int k = i + 1; k < j; k++)
{
int t = m[i][k] + m[k + 1][j] + p[i - 1] * p[k] * p[j];
if (t < m[i][j])
{
m[i][j] = t;
s[i][j] = k;
}
}
}
}
}
void print_optimal(int s[100][100], int i, int j, int a[])
{
if (i == j) cout << " A[" << a[i - 1] << "," << a[i] << "]";
else {
cout << " ( ";
print_optimal(s, i, s[i][j], a);
print_optimal(s, s[i][j] + 1, j, a);
cout << " ) ";
}
}
int main() {
int n = 0;
int* p;
while (true)
{
cout << "输入矩阵的个数:";
cin >> n;
if (n < 0)
{
break;
}
cout << endl << "请输入" << n + 1 << "个整数,分别是各个矩阵的行列数" << endl;
p = new int[n];
for (int i = 0; i < n + 1; i++) {
cin >> p[i];
}
cout << "原始数据为以下矩阵" << endl;
for (int i = 0; i < n; i++)
{
cout << p[i] << "*" << p[i + 1] << endl;
}
MatrixChain(p, n, m, s);
cout_m(m, n);
cout << endl;
cout_s(s, n);
cout << "最优的运算方式的乘法次数为:" << m[1][n] << endl;
cout << "加括号的方式为:" << endl;
print_optimal(s, 1, n, p);
cout << endl;
}
}
memset是计算机中C/C++语言初始化函数。作用是将某一块内存中的内容全部设置为指定的值, 这个函数通常为新申请的内存做初始化工作。
头文件:<memory.h>或<string.h>
函数原型:void *memset(void *s, int ch, size_t n);
功能:将s中当前位置后面的n个字节 (typedef unsigned int size_t )用 ch 替换并返回 s 。
setw和setfill被称为输出控制符,使用时需要在程序开头写上#include "iomanip.h"