复变函数的四维自变量

  复变函数的自变量为何是四维的?

  先弄清为什么复变函数因变量的实、虚部分别是关于因变量实、虚部的二元实变函数。

  我们先来看一下书上的定义。

  这里面的z和w均为复数,且对z求幂次方,n次方根,乘,除以复数时,w的实、虚部均由z的实虚部决定,如 w =  z ²中,w的实部u和虚部v均是关于x,y的二元实变函数。对z求加减复数或乘除纯实数时,虽然w的实、虚部中没有x,y,但可以视为x或者y前的系数为0。

联想(结合偏导数理解):

(这里与高数中偏导数一部分很像,f (x , y)对x(或y)求偏导后的f ' 仍然含有x和y,只是有的x或y前系数变为了0。如f (x , y) = x ² + y ² 和f (x , y) = x ² + y 对x求偏导后的结果一个是2 x + 2 y,一个是2 x,后者虽然没有含y的项,但实际上它只是y前的系数为0了。)

  搞清楚了上面之后,我们接着进行。

  u , v均为x , y的二元函数意味着什么?

  首先,这意味着复变函数可以转为两个二元实变函数来研究。那么,复变函数的自变量就对应了u (x , y)和v (x , y)的自变量了。而u,v的表达式不同,其对应的自变量的变化也就不同了。这时候它的自变量也就自然而然的是四维的了。

  出现了四维自变量的情况,我们该怎么办呢?

降维打击:用两个复平面来表示自变量与因变量的关系。

  其实初高中做某些题的时候,我们就见过或者用过这种方法。

  这里,我就把书上的例子请过来举例吧。

  我这里把自变量的图像大致画了下。不像书上那样,我分开画可能会更直观一点。因为u和v都是关于x,y的函数,所以当x,y取不同的值时,w直接对应的自变量u,v也会变化。u,v为常量时,x,y分别对应不同的图像。我取了一些特殊的u,v的值(方便找x,y对应的特殊点),当u是常数c1时,x ² - y ² = c1就是一个双曲线了;当v是一个常数c2时,x y = c2就是一个反比例函数了。我们把这两个图像放一块来看(直接上书上的图)。 

每一个(x ,y)都对应着一个确定的u和v,也就对应了一个确定的w。上图中曲线相交区域,我们通过转化,可以得到下图直线相交部分区域。

  这样,自变量的变化区域就更简单了,我们可以更容易的通过u,v来找w的值域了。

  如果你对上面不是太理解的话,可以看看下面的类比。

类比(一、二类曲线积分,一、二类曲面积分):

  曲线积分或曲面积分的自变量都是坐标点,即曲线上的点和曲面上的点,因变量可以是某一点对应的所谓的质量函数(随x,y变化),进而可以把每一点的质量给架起高度,便是我们所熟悉的三维坐标系了。

  区别:自变量是坐标的曲线积分其实是一个三维的函数,而这里的复变函数则是以两条曲线上的点同时为自变量的函数,因而无法在二维平面去表示自变量,而需要两个x轴,两个y轴来分别表示u和v。用两个复平面后,u,v便分别成为了类似曲线积分的函数,进而对复变函数进行了降维打击。

其他方法:

  我们也可以建四维坐标系,不过不是四轴都垂直的坐标系,因为我们画不出来真正意义上的四维坐标系。或者,做一个同实轴(或同虚轴)的坐标系,这样复平面就被降到了三位。具体方法,我还没有去试,你们感兴趣的话可以去尝试做一下。

  小编第一次写csdn,水平不是太高。如有出错,请谅解并给小编指出,我一定及时纠正。感谢大家的支持!!!

  • 1
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值