代数严格证明:
这部分与书上相同,我大致说下。
乘幂与方根的基础是乘除,n次的乘或除便是方根。
这里的公式,我不再推导,直接给结论。复数乘一个复数,得出来复数的模等于前二者模的积,辐角等于前二者辐角的和;复数除以一个复数,得出来复数的模等于前二者的商,辐角等于前二者辐角的差。
那么,复数的n次方,也就是这个复数乘以自己n次,根据下面公式可知它唯一的结果。
复数的n次方根如下:
一些我个人的想法:
理论:
因为复数乘复数,其辐角等于二者之和。所以,复数的乘幂,也就是辐角一直加自身,最终得到的一定是唯一确定的值。而复数的n次方根,也就是辐角要除以n,这时候不同来了,如果 ,那么 w 的辐角可以取
,这里
的范围是 (0 ,2Π],那么只要
中 k < n ≤ k+1,则
的值一定在(0 ,2Π]。即 k 取 [0 , n-1] ,共n个值。(如果把二者值看作是,[-Π , Π],得到的结果也是一样的)
上面也是纯理论部分,我们可以举一个例子来看一看。
举例:
假设 w 的辐角主值为50°,(这里都不说它的模值了,因为开n次方根后,它的模值是唯一确定的)要对它开7次方根,那么第一个值也是很容易想到的,(50/7)°。紧接着我们可以把50°看作是(50+2Π)°,即410°,那么 z 的辐角便为(410/2)°……我们直接来看第七次,此时,z 的辐角为(50+6*2Π)/7,约为315.7°,仍然符合。但当 k 取7时,z 的辐角为(50+7*2Π)/ 7,(分母仍得为7,因为开的是7次方根)即50°,可以看出来开始和第一个角的值重复了。这就说明复数开n次方根的结果有n个。