python画伽马分布和指数分布地概率密度曲线对照

该代码示例使用Python的Scipy和matplotlib库绘制了Gamma分布和指数分布的概率密度函数曲线,分别对应于scale参数为1/3,1,和2的情况。每个分布的图形都用不同的标记和线条样式区分,并且包含了LaTeX格式的参数标签。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

分别画出X=1/3,1,2地指数分布概率密度曲线

# 导入需要的库
from scipy.stats import expon,gamma
import pylab as plt

# 设置 x 轴的范围和点数
x = plt.linspace(0, 3, 100)

# 设置 gamma 分布的参数和标记
L = [1/3, 1, 2]    # gamma 分布的 scale 参数列表
s1 = ['*-','.-','o-']    # 线条样式列表
s2 = ['$\\alpha=1,\\beta=\\frac{1} {3} $','$\\alpha=1,\\beta=1 $','$\\alpha=1,\\beta=2 $']    # 标签列表,使用 LaTeX 格式

# 设置指数分布的参数和标记
s3=['$\\theta=\\frac{1} {3}$','$\\theta=1 $','$\\theta=2 $']    # 标签列表,使用 LaTeX 格式

# 设置字体和字号
plt.rc('text', usetex=True)
plt.rc('font', size=15)

# 调整子图之间的间距
plt.subplots_adjust(wspace=0.5)

# 绘制 gamma 分布图像
plt.subplot(121)    # 创建子图,设置位置为 1 行 2 列中的第 1 个
for i in range(len(L)):
    plt.plot(x, gamma.pdf(x, 1, scale=L[i]), s1[i], label=s2[i])    # 绘制 gamma 分布图像
plt.xlabel('$x$')    # 设置 x 轴标签
plt.ylabel('$f(x)$')    # 设置 y 轴标签
plt.legend()    # 显示图例

# 绘制指数分布图像
plt.subplot(122)    # 创建子图,设置位置为 1 行 2 列中的第 2 个
for i in range(len(L)):
    plt.plot(x, expon.pdf(x, scale=L[i]), s1[i], label=s3[i])    # 绘制指数分布图像
plt.xlabel('$x$')    # 设置 x 轴标签
plt.ylabel('$f(x)$')    # 设置 y 轴标签
plt.legend()    # 显示图例

# 显示图像
plt.show()

 

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值