分别画出X=1/3,1,2地指数分布概率密度曲线
# 导入需要的库
from scipy.stats import expon,gamma
import pylab as plt
# 设置 x 轴的范围和点数
x = plt.linspace(0, 3, 100)
# 设置 gamma 分布的参数和标记
L = [1/3, 1, 2] # gamma 分布的 scale 参数列表
s1 = ['*-','.-','o-'] # 线条样式列表
s2 = ['$\\alpha=1,\\beta=\\frac{1} {3} $','$\\alpha=1,\\beta=1 $','$\\alpha=1,\\beta=2 $'] # 标签列表,使用 LaTeX 格式
# 设置指数分布的参数和标记
s3=['$\\theta=\\frac{1} {3}$','$\\theta=1 $','$\\theta=2 $'] # 标签列表,使用 LaTeX 格式
# 设置字体和字号
plt.rc('text', usetex=True)
plt.rc('font', size=15)
# 调整子图之间的间距
plt.subplots_adjust(wspace=0.5)
# 绘制 gamma 分布图像
plt.subplot(121) # 创建子图,设置位置为 1 行 2 列中的第 1 个
for i in range(len(L)):
plt.plot(x, gamma.pdf(x, 1, scale=L[i]), s1[i], label=s2[i]) # 绘制 gamma 分布图像
plt.xlabel('$x$') # 设置 x 轴标签
plt.ylabel('$f(x)$') # 设置 y 轴标签
plt.legend() # 显示图例
# 绘制指数分布图像
plt.subplot(122) # 创建子图,设置位置为 1 行 2 列中的第 2 个
for i in range(len(L)):
plt.plot(x, expon.pdf(x, scale=L[i]), s1[i], label=s3[i]) # 绘制指数分布图像
plt.xlabel('$x$') # 设置 x 轴标签
plt.ylabel('$f(x)$') # 设置 y 轴标签
plt.legend() # 显示图例
# 显示图像
plt.show()