残差连接(Residual Connection)

是一种通过引入跨层的直接连接来优化深度神经网络的方法。这个概念最早由何恺明(Kaiming He)等人提出,并应用于深度残差网络(ResNet)中。

背景:

在深度神经网络中,随着层数的增加,网络的性能在一定程度上会提高。然而,深度网络的训练也面临着一些挑战,其中之一是梯度消失或梯度爆炸的问题。当反向传播过程中的梯度变得非常小或非常大时,网络的参数更新会受到影响,导致训练变得困难。

残差连接的思想:

残差连接的核心思想是引入一个"shortcut"或"skip connection",允许输入信号直接绕过一些层,并与这些层的输出相加。这样,网络不再需要学习将输入映射到输出的完整函数,而是学习一个残差函数,即输入与期望输出之间的差异。

具体实现:

残差连接通常通过短路连接来实现,即将输入直接与层的输出相加。在数学上,假设一个层的输入为 x,输出为 F(x),那么该层的残差连接可以表示为:

输出=F(x)+x

优点:

  1. 梯度传播: 梯度能够更容易地通过残差连接传递。在反向传播时,由于直接的跳跃连接,梯度不会消失得太快,使得训练更加容易。

  2. 信息流动: 残差连接允许信息直接从输入层流向后续层,减轻了深度网络中信息难以传递的问题,有助于保持更加直接的信息流动。

  3. 网络深度: 允许构建非常深的网络而不会遇到梯度消失的问题,从而推动了深度学习模型的发展。

import torch
import torch.nn as nn
import torch.nn.functional as F

# 定义残差块
class ResidualBlock(nn.Module):
    def __init__(self, in_channels, out_channels, stride=1):
        super(ResidualBlock, self).__init__()

        # 第一个卷积层
        self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=stride, padding=1, bias=False)
        self.bn1 = nn.BatchNorm2d(out_channels)

        # 激活函数
        self.relu = nn.ReLU(inplace=True)

        # 第二个卷积层
        self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1, bias=False)
        self.bn2 = nn.BatchNorm2d(out_channels)

        # 如果输入和输出的通道数不一致,需要进行调整,用于残差连接
        self.shortcut = nn.Sequential()
        if stride != 1 or in_channels != out_channels:
            self.shortcut = nn.Sequential(
                nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=stride, bias=False),
                nn.BatchNorm2d(out_channels)
            )

    def forward(self, x):
        residual = x  # 保存输入,用于残差连接

        # 第一个卷积块
        out = self.conv1(x)
        out = self.bn1(out)
        out = self.relu(out)

        # 第二个卷积块
        out = self.conv2(out)
        out = self.bn2(out)

        out += self.shortcut(residual)  # 残差连接
        out = self.relu(out)

        return out

# 定义ResNet模型
class ResNet(nn.Module):
    def __init__(self, block, layers, num_classes=10):
        super(ResNet, self).__init__()
        self.in_channels = 64  # 输入通道数
        self.conv1 = nn.Conv2d(3, 64, kernel_size=3, stride=1, padding=1, bias=False)
        self.bn1 = nn.BatchNorm2d(64)
        self.relu = nn.ReLU(inplace=True)

        # 通过make_layer函数构建ResNet的各层
        self.layer1 = self.make_layer(block, 64, layers[0], stride=1)
        self.layer2 = self.make_layer(block, 128, layers[1], stride=2)
        self.layer3 = self.make_layer(block, 256, layers[2], stride=2)
        self.layer4 = self.make_layer(block, 512, layers[3], stride=2)

        # 全局平均池化层
        self.avg_pool = nn.AdaptiveAvgPool2d((1, 1))

        # 全连接层
        self.fc = nn.Linear(512, num_classes)

    # 构建每一层的函数
    def make_layer(self, block, out_channels, blocks, stride):
        layers = []
        layers.append(block(self.in_channels, out_channels, stride))
        self.in_channels = out_channels
        for _ in range(1, blocks):
            layers.append(block(out_channels, out_channels, stride=1))
        return nn.Sequential(*layers)

    def forward(self, x):
        # 第一个卷积块
        out = self.conv1(x)
        out = self.bn1(out)
        out = self.relu(out)

        # 后续各层的卷积块
        out = self.layer1(out)
        out = self.layer2(out)
        out = self.layer3(out)
        out = self.layer4(out)

        # 全局平均池化
        out = self.avg_pool(out)
        out = out.view(out.size(0), -1)

        # 全连接层
        out = self.fc(out)

        return out

# 创建ResNet18模型
model = ResNet(ResidualBlock, [2, 2, 2, 2])

# 打印模型结构
print(model)

ResidualBlock类中,残差连接通过将输入与经过卷积和归一化的输出相加来实现。在ResNet类中,通过堆叠多个ResidualBlock来构建深度网络。

  • 4
    点赞
  • 27
    收藏
    觉得还不错? 一键收藏
  • 2
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值