力扣343 整数拆分

先来看一下题目

给定一个正整数 n ,将其拆分为 k 个 正整数 的和( k >= 2 ),并使这些整数的乘积最大化。

返回 你可以获得的最大乘积 。

刚看这个题的时候我没有什么思路,看了看样例。10=3+3+4,最大。那么可以理解为10=3+7,然后7=3+4为整数拆分的最大值,这么看这个题可以用动态规划来写。

首先我们确定dp数组的含义,根据这个题目显而易见我们可以认为dp[i]为i整数拆分的最大值,接下来就是这个题的难点,递推公式。还是从样例入手,10=3+3+4,是不是可以理解为10=3+7或者10=4+6然后取7的整数拆分最大值或者6的整数拆分最大值,这样看我们是不是可以得出dp[i]=j*dp[i-j],我们再来分析10=7+3,7的整数拆分最大值是不是可以视为j*(i-j),也就是3*4,而不是7=2+2+3,换句话说,就不是dp[i-j]*j,也就是说,我们要去dp[i-j]*j和j*(i-j)的最大值,这样我们的递推公式就可以确定了

 

​dp[i]=max(max(j*(i-j),j*dp[i-j]),dp[i]);

​

至于这个dp[i],就是用来实现不断更新的,在此不做过多赘述。

那接下来就是初始化,这个题的初始化就很简单了,就是将我们已知的给初始化,所以说你初始化到几都可以,我是初始化到dp[2]=1。

遍历顺序和打印就非常简单了,接下来我们直接放AC代码。

class Solution {
public:
    int integerBreak(int n) {
            vector<int> dp(n+1);
            dp[2]=1;
            
            for(int i=3;i<=n;i++){
                for(int j=0;j<=i/2;j++){
                    dp[i]=max(max(j*(i-j),j*dp[i-j]),dp[i]);
                }
            }
            return dp[n];
    }
};

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值