先来看一下题目
给定一个正整数 n
,将其拆分为 k
个 正整数 的和( k >= 2
),并使这些整数的乘积最大化。
返回 你可以获得的最大乘积 。
刚看这个题的时候我没有什么思路,看了看样例。10=3+3+4,最大。那么可以理解为10=3+7,然后7=3+4为整数拆分的最大值,这么看这个题可以用动态规划来写。
首先我们确定dp数组的含义,根据这个题目显而易见我们可以认为dp[i]为i整数拆分的最大值,接下来就是这个题的难点,递推公式。还是从样例入手,10=3+3+4,是不是可以理解为10=3+7或者10=4+6然后取7的整数拆分最大值或者6的整数拆分最大值,这样看我们是不是可以得出dp[i]=j*dp[i-j],我们再来分析10=7+3,7的整数拆分最大值是不是可以视为j*(i-j),也就是3*4,而不是7=2+2+3,换句话说,就不是dp[i-j]*j,也就是说,我们要去dp[i-j]*j和j*(i-j)的最大值,这样我们的递推公式就可以确定了
dp[i]=max(max(j*(i-j),j*dp[i-j]),dp[i]);
至于这个dp[i],就是用来实现不断更新的,在此不做过多赘述。
那接下来就是初始化,这个题的初始化就很简单了,就是将我们已知的给初始化,所以说你初始化到几都可以,我是初始化到dp[2]=1。
遍历顺序和打印就非常简单了,接下来我们直接放AC代码。
class Solution {
public:
int integerBreak(int n) {
vector<int> dp(n+1);
dp[2]=1;
for(int i=3;i<=n;i++){
for(int j=0;j<=i/2;j++){
dp[i]=max(max(j*(i-j),j*dp[i-j]),dp[i]);
}
}
return dp[n];
}
};