AcWing 4262. 空调(每日一题)

题目链接:4262. 空调 - AcWing题库

Farmer John 的 N 头奶牛对他们牛棚的室温非常挑剔。

有些奶牛喜欢温度低一些,而有些奶牛则喜欢温度高一些。

Farmer John 的牛棚包含一排 N 个牛栏,编号为 1…N,每个牛栏里有一头牛。

第 i 头奶牛希望她的牛栏中的温度是 pi,而现在她的牛栏中的温度是 ti。

为了确保每头奶牛都感到舒适,Farmer John 安装了一个新的空调系统。

该系统进行控制的方式非常有趣,他可以向系统发送命令,告诉它将一组连续的牛栏内的温度升高或降低 1 个单位——例如「将牛栏 5…8 的温度升高 1 个单位」。

一组连续的牛栏最短可以仅包含一个牛栏。

请帮助 Farmer John 求出他需要向新的空调系统发送的命令的最小数量,使得每头奶牛的牛栏都处于其中的奶牛的理想温度。

输入格式

输入的第一行包含 N。

下一行包含 N 个非负整数 p1…pN,用空格分隔。

最后一行包含 N个非负整数 t1…tN。

输出格式

输出一个整数,为 Farmer John 需要使用的最小指令数量。

数据范围

1≤N≤10^5
0≤pi,ti≤100000

输入样例:

5
1 5 3 3 4
1 2 2 2 1

输出样例:

5

样例解释

一组最优的 Farmer John 可以使用的指令如下:

初始温度     :1 2 2 2 1
升高牛棚 2..5:1 3 3 3 2
升高牛棚 2..5:1 4 4 4 3
升高牛棚 2..5:1 5 5 5 4
降低牛棚 3..4:1 5 4 4 4
降低牛棚 3..4:1 5 3 3 4

解题思路:

一个数组转化到另一个数组,我们可以考虑利用差分,快速解决,在一个区间上所有的数加上一个数k或者减去一个数k,我们可以等价转化为差分数组在区间两端一个+k一个-k。题目中起始数组到目标数组,我们可以把这两个数组做差值,然后差值数组变为差分数组,等价为转化到全零数组。差分数组每个值加和必为0(此题必有解),因为我们每次只相当于在差分数组两个值上加减,一个加一个减,要到达0数组,那肯定小于0的每次+1,直到为0,大于0的每次-1,直到为0。

p数组:   1 5 3 3 4
t数组:   1 2 2 2 1
差值数组:0 3 1 1 3
差分数组:0 3 -2 0 2 -3
第一次:  0 2 -1 0 2 -3
第二次:  0 1  0 0 2 -3
第三次:  0 0  0 0 2 -2
第四次:  0 0  0 0 1 -1
第五次:  0 0  0 0 0  0
所以只需要统计大于0或者小于0的值即可

AC代码:

#include<iostream>
using namespace std;
const int N=1e5+5;
int n,ans;
int p[N],t[N];//p数组既作为p数组又作为差分数组
int main(){
	cin>>n;
	for(int i=1;i<=n;i++){
		cin>>p[i];
	}
	for(int i=1;i<=n;i++){
		cin>>t[i];
		p[i]-=t[i];
	}
	//差分p[i]=p[i]-p[i-1],差分数组边界p[1]=p[1],p[n+1]=-p[n]
	for(int i=n+1;i>=1;i--){//因为i要先于i-1更新,所以逆序遍历
		p[i]-=p[i-1];
	}
	for(int i=1;i<=n+1;i++){//只要遍历大于0或者小于零的p[i]累加即可
		if(p[i]>0){
			ans+=p[i];
		}
	}
	cout<<ans<<endl;
	return 0;
}

感谢大家支持,一起冲刺蓝桥杯,写的不是很清楚,如果有错误的地方欢迎各位大佬指正。

题目链接:https://www.acwing.com/problem/content/4948/ 题目描述: 给定一棵有 $n$ 个结点的树,结点从 $1$ 到 $n$ 编号,每个结点都有一个权值 $w_i$,现在有 $m$ 次操作,每次操作是将树中编号为 $x$ 的结点的权值加上 $y$,然后询问一些节点是否为叶子节点,如果是输出 $1$,否则输出 $0$。 输入格式: 第一行包含两个整数 $n$ 和 $m$。 第二行包含 $n$ 个整数,其中第 $i$ 个整数表示结点 $i$ 的初始权值 $w_i$。 接下来 $n-1$ 行,每行包含两个整数 $a$ 和 $b$,表示点 $a$ 和点 $b$ 之间有一条无向边。 接下来 $m$ 行,每行描述一次操作,格式为三个整数 $t,x,y$。其中 $t$ 表示操作类型,$t=1$ 时表示将编号为 $x$ 的结点的权值加上 $y$,$t=2$ 时表示询问编号为 $x$ 的结点是否为叶子节点。 输出格式: 对于每个操作 $t=2$,输出一个结果,表示询问的结点是否为叶子节点。 数据范围: $1≤n,m≤10^5$, $1≤w_i,y≤10^9$ 样例: 输入: 5 5 1 2 3 4 5 1 2 1 3 3 4 3 5 2 3 0 1 3 100 2 3 0 1 1 100 2 3 0 输出: 1 0 0 算法1: 暴力dfs,每次都重新遍历整棵树,时间复杂度 $O(nm)$ 时间复杂度: 最坏情况下,每次操作都要遍历整棵树,时间复杂度 $O(nm)$,无法通过此题。 算法2: 用一个 vector<int> sons[n+5] 来存储每个点的所有子节点,这样可以用 $O(n)$ 预处理出每个点的度数 $deg_i$,如果 $deg_i=0$,则 $i$ 是叶子节点,否则不是。 对于每个操作,只需要更新叶子节点关系的变化就可以了。如果某个节点的度数从 $1$ 变成 $0$,则该节点变成了叶子节点;如果某个节点的度数从 $0$ 变成 $1$,则该节点不再是叶子节点。 时间复杂度: 每次操作的时间复杂度是 $O(1)$,总时间复杂度 $O(m)$,可以通过此题。 C++ 代码: (算法2)
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

摆烂小白敲代码

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值