离散化用于题目要求空间较大,无法进行存储。eg:线段树无法开1e9的空间,但是询问只有很少,此时就可以使用离散化处理,将将要使用的数据映射到1e5的数组中从而使用线段树。
Code:
#include <bits/stdc++.h>
using namespace std;
typedef long long LL;
typedef pair<int, int> PII;
const int N = 3e5 + 5;
int a[N], s[N];
vector<int> alls;
vector<PII> add, que;
int check(int x)//二分用来寻找映射之后对应的值
{
int l = 0, r = alls.size() - 1;
while (l < r) {
int mid = l + r >> 1;
if (alls[mid] >= x) r = mid;
else l = mid + 1;
}
return r + 1;
}
int main()
{
ios::sync_with_stdio(false), cin.tie(0), cout.tie(0);
int n, m;
cin >> n >> m;
for (int i = 1; i <= n; i++) {//离线
int x, c;
cin >> x >> c;
add.push_back({ x,c });
alls.push_back(x);
}
for (int i = 1; i <= m; i++) {
int l, r;
cin >> l >> r;
que.push_back({ l,r });
alls.push_back(l);
alls.push_back(r);
}
sort(alls.begin(), alls.end());
alls.erase(unique(alls.begin(), alls.end()), alls.end());// 排序加去重,避免同一个数据出现两个映射值
for (auto tmp : add) {
int x = check(tmp.first);
a[x] += tmp.second;
}
for (int i = 1; i <= alls.size(); i++) {//对映射后的区间进行前缀和
s[i] = s[i - 1] + a[i];
}
for (auto tmp : que) {
int l = check(tmp.first);
int r = check(tmp.second);
cout << s[r] - s[l - 1] << endl;
}
return 0;
}