离散化处理

离散化用于题目要求空间较大,无法进行存储。eg:线段树无法开1e9的空间,但是询问只有很少,此时就可以使用离散化处理,将将要使用的数据映射到1e5的数组中从而使用线段树。

经典例题:区间和

 Code:

#include <bits/stdc++.h>
using namespace std;
typedef long long LL;
typedef pair<int, int> PII;
const int N = 3e5 + 5;
int a[N], s[N];
vector<int> alls;
vector<PII> add, que;
int check(int x)//二分用来寻找映射之后对应的值
{
	int l = 0, r = alls.size() - 1;
	while (l < r) {
		int mid = l + r >> 1;
		if (alls[mid] >= x) r = mid;
		else l = mid + 1;
	}
	return r + 1;
}
int main()
{
	ios::sync_with_stdio(false), cin.tie(0), cout.tie(0);
	int n, m;
	cin >> n >> m;
	for (int i = 1; i <= n; i++) {//离线
		int x, c;
		cin >> x >> c;
		add.push_back({ x,c });
		alls.push_back(x);
	}
	for (int i = 1; i <= m; i++) {
		int l, r;
		cin >> l >> r;
		que.push_back({ l,r });
		alls.push_back(l);
		alls.push_back(r);
	}
	sort(alls.begin(), alls.end());
	alls.erase(unique(alls.begin(), alls.end()), alls.end());// 排序加去重,避免同一个数据出现两个映射值
	for (auto tmp : add) {
		int x = check(tmp.first);
		a[x] += tmp.second;
	}
	for (int i = 1; i <= alls.size(); i++) {//对映射后的区间进行前缀和
		s[i] = s[i - 1] + a[i];
	}
	for (auto tmp : que) {
		int l = check(tmp.first);
		int r = check(tmp.second);
		cout << s[r] - s[l - 1] << endl;
	}
	return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值