【备战秋招】每日一题:P1087-美团3-18真题 + 题目思路 + 所有语言带注释

2023大厂笔试模拟练习网站(含题解)

www.codefun2000.com
最近我们一直在将收集到的各种大厂笔试的解题思路还原成题目并制作数据,挂载到我们的OJ上,供大家学习交流,体会笔试难度。现已录入200+道互联网大厂模拟练习题,还在极速更新中。欢迎关注公众号“塔子哥学算法”获取最新消息。
在这里插入图片描述

每日一题:P1087-美团3-18真题
提交链接:https://codefun2000.com/p/P1077

为了更好的阅读体检,可以查看OJ上的题解。进入提交链接,点击右边菜单栏的"查看塔子哥的题解"

目录

1.题面

2.思路

3.类似题目推荐

4.代码

题面

在一个荒凉的大漠中,塔子哥被派遣去完成一个秘密任务:消灭在这片区域活动的敌军。这片区域广阔辽阔,有着无尽的沙丘和荒凉的山峰,许多敌人藏匿在这些地方,等待着塔子哥的到来。

为了提高效率,塔子哥使用了一款高级游戏模拟器,在虚拟的游戏环境中,他可以通过控制游戏角色来模拟现实世界中的作战行动。这款游戏的目标是尽可能地抓获敌人。

在游戏中,敌人的位置将被一个二维坐标 ( x , y ) (x,y) (x,y)所描述。塔子哥有一个全屏技能,该技能能一次性将若干敌人一次性捕获。捕获的敌人之间的横坐标的最大差值不能大于 A A A,纵坐标的最大差值不能大于 B B B

现在,塔子哥来到了游戏的一个新关卡,他需要在规定时间内消灭尽可能多的敌人。他打开了游戏地图,看到了所有敌人的坐标。他立刻开始思考,如何才能最大限度地利用自己的技能,一次性捕获尽可能多的敌人。

输入描述

第一行三个整数 N , A , B N,A,B N,A,B,表示共有 N N N个敌人,塔子哥的全屏技能的参数 A A A和参数 B B B

接下来 N N N行,每行两个数字 x , y x,y x,y,描述一个敌人所在的坐标

1 ≤ N ≤ 500 1 \leq N \leq 500 1N500 1 ≤ A , B ≤ 1000 , 1 ≤ x , y ≤ 1000 1 \leq A,B \leq 1000,1 \leq x,y \leq 1000 1A,B10001x,y1000

输出描述

一行,一个整数表示塔子哥使用技能单次所可以捕获的最多数量。

样例 1 1 1

输入

3 1 1
1 1
1 2
1 3

输出

2

说明:
最多可以同时捕获两名敌人,可以是 ( 1 , 1 ) (1,1) (11) ( 1 , 2 ) (1,2) (12)处的敌人,也可以是 ( 1 , 2 ) (1,2) (12) ( 1 , 3 ) (1,3) (13)处的敌人,但不可以同时捕获三名敌人,因为三名敌人时,纵坐标的最大差值是 2 2 2,超过了参数 B B B的值 1 1 1

样例 2 2 2

输入

5 1 2
1 1
2 2
3 3
1 3
1 4

输出

3

说明

最多同时捕获三名敌人。其中一种方案如下: 捕获 ( 1 , 1 ) (1, 1) (11) ( 1 , 3 ) (1,3) (13) ( 2 , 2 ) (2,2) (22)处的三个敌人。

思路

step1:暴力

观察到坐标的范围不大, x x x y y y 都是 1000 1000 1000 以内的。所以直接将每个敌人放入坐标系中再枚举坐标系的每个 a ∗ b a*b ab 的矩形求出矩形内的敌人数量即可。

复杂度 O ( x 4 ) O(x^4) O(x4)

step2:前缀和优化

对于求每个 a ∗ b a * b ab的矩阵的敌人数量时,我们可以使用二维前缀和优化,计算敌人复杂度从 O ( a ∗ b ) O(a*b) O(ab) 降至 O ( 1 ) O(1) O(1)

复杂度: O ( x 2 ) O(x^2) O(x2)

二维前缀和知识点学习:https://oi-wiki.org/basic/prefix-sum/

类似题目推荐

leetcode
  1. 363.最大子矩阵和
  2. 560.和为 K 的子数组
  3. 304.二维区域和检索 - 矩阵不可变
  4. 325.和为 K 的最长子数组长度
Codefun2000

P1195.华为实习-2023.04.19-第一题-塔子哥监考

代码

python

# 读入数据
n, a, b = map(int, input().split())

# 初始化二维矩阵
mp = [[0]*1011 for i in range(1011)]
# 将敌人放入矩阵
for i in range(n):
    x, y = map(int, input().split())
    mp[x][y] += 1       
# 对矩阵求前缀和
for i in range(1, 1011):
    for j in range(1, 1011):
        # 转移方程解释见Oi-Wiki
        mp[i][j] += mp[i-1][j] + mp[i][j-1] - mp[i-1][j-1]
# 枚举技能矩阵(的右下角)
ans = 0
for i in range(a+1, 1011):  #枚举右上端点
    for j in range(b+1, 1011):      #此时枚举的矩形为 (i-a, j-b) 到 (i,j)之间的矩形
        t = mp[i][j] - mp[i-a-1][j] - mp[i][j-b-1] + mp[i-a-1][j-b-1]
        ans = max(ans, t)
print(ans)

C++

#include <bits/stdc++.h>
using namespace std;

int n, a, b;
int mp[1011][1011];

int main() {
    // 读入数据
    cin >> n >> a >> b;
    for(int i = 0; i < n; i++) {
        int x, y;
        cin >> x >> y;
        mp[x][y]++;
    }
    // 对矩阵求前缀和
    for(int i = 1; i <= 1010; i++) {
        for(int j = 1; j <= 1010; j++) {
            mp[i][j] += mp[i-1][j] + mp[i][j-1] - mp[i-1][j-1];
        }
    }
    // 枚举技能矩阵的右下角,并求矩形伤害总和的最大值
    int ans = 0;
    for(int i = a+1; i <= 1010; i++) {
        for(int j = b+1; j <= 1010; j++) {
            int t = mp[i][j] - mp[i-a-1][j] - mp[i][j-b-1] + mp[i-a-1][j-b-1];
            ans = max(ans, t);
        }
    }
    cout << ans << endl;
    return 0;
}

java

import java.util.Scanner;

public class Main {
    public static void main(String[] args) {
        Scanner sc = new Scanner(System.in);
        int n = sc.nextInt();
        int a = sc.nextInt();
        int b = sc.nextInt();
        
        int[][] mp = new int[1011][1011];
        for(int i = 0; i < n; i++) {
            int x = sc.nextInt();
            int y = sc.nextInt();
            mp[x][y]++;
        }

        // 求二维前缀和
        for(int i = 1; i <= 1010; i++) {
            for(int j = 1; j <= 1010; j++) {
                mp[i][j] += mp[i-1][j] + mp[i][j-1] - mp[i-1][j-1];
            }
        }

        // 枚举技能矩阵的右下角,并求矩形伤害总和的最大值
        int ans = 0;
        for(int i = a+1; i <= 1010; i++) {
            for(int j = b+1; j <= 1010; j++) {
                int t = mp[i][j] - mp[i-a-1][j] - mp[i][j-b-1] + mp[i-a-1][j-b-1];
                ans = Math.max(ans, t);
            }
        }

        System.out.println(ans);
    }
}

js

// 监听标准输入流的 data 事件,读取输入的数据并保存到变量 input 中
process.stdin.resume();
process.stdin.setEncoding('utf-8');
let input = '';
process.stdin.on('data', (data) => {
    input += data;
    return;
});

// 监听标准输入流的 end 事件,在所有数据读入完成后执行核心代码
process.stdin.on('end', () => {
    // 按行分割输入数据,并解析出采用空格分割的三个整数值 n、a 和 b
    const lines = input.trim().split('\n');
    let n, a, b;
    n = parseInt(lines[0].split(' ')[0]);
    a = parseInt(lines[0].split(' ')[1]);
    b = parseInt(lines[0].split(' ')[2]);

    // 创建一个二维数组 mp 用于存储每个点是否被击中
    let mp = [];
    for(let i = 0; i < 1011; i++) {
        mp[i] = new Array(1011).fill(0);
    }

    // 循环读入 n 行数据,并将每个坐标对应的位置标记为已击中
    for(let i = 1; i <= n; i++) {
        let x = parseInt(lines[i].split(' ')[0]);
        let y = parseInt(lines[i].split(' ')[1]);
        mp[x][y]++;
    }

    // 对矩阵求前缀和,通过累加计算矩形内所有击中点的个数
    for(let i = 1; i <= 1010; i++) {
        for(let j = 1; j <= 1010; j++) {
            mp[i][j] += mp[i-1][j] + mp[i][j-1] - mp[i-1][j-1];
        }
    }

    // 枚举技能矩阵的右下角,并求矩形伤害总和的最大值
    let ans = 0;
    for(let i = a+1; i <= 1010; i++) {
        for(let j = b+1; j <= 1010; j++) {
            let t = mp[i][j] - mp[i-a-1][j] - mp[i][j-b-1] + mp[i-a-1][j-b-1];
            ans = Math.max(ans, t);
        }
    }

    // 输出结果
    console.log(ans);
});

go

package main

import (
	"fmt"
)

func main() {

	var n, a, b, x, y int
	fmt.Scan(&n, &a, &b)
	N := 1005
	x_y := make([][]int, N)
	for i := 0; i < N; i++ {
		x_y[i] = make([]int, N)
	}
	for i := 0; i < n; i++ {
		fmt.Scan(&x, &y)
		x_y[x][y] = x_y[x][y] + 1
	}

	//计算前缀和.
	for i := 1; i < N; i++ {
		for j := 1; j < N; j++ {
			x_y[i][j] = x_y[i][j-1] + x_y[i-1][j] - x_y[i-1][j-1] + x_y[i][j]
		}
	}
	//计算小矩阵.
	max_v := 0
	for i := a + 1; i < N; i++ {
		for j := b + 1; j < N; j++ {
			t := x_y[i][j] - x_y[i-a-1][j] - x_y[i][j-b-1] + x_y[i-a-1][j-b-1]
			max_v = max(max_v, t)
		}
	}
	fmt.Println(max_v)
}

func max(x, y int) int {
	if x > y {
		return x
	}
	return y
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

塔子哥学算法

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值