题目:
给定一个长度为n的整数数组height。有n条垂线,第i条线的两个端点是(i, 0)和(i, height[i])。 找出其中的两条线,使得它们与x轴共同构成的容器可以容纳最多的水。 返回容器可以储存的最大水量。 说明:你不能倾斜容器。
示例 1:
输入:[输入:[1,8,6,2,5,4,8,3,7]输出:49解释:图中垂直线代表输入数组 [1,8,6,2,5,4,8,3,7]。在此情况下,容器能够容纳水(表示为蓝色部分)的最大值为 49。
示例 2:输入:height = [1,1]输出:1。
思路:
- 二重循环?O(n方)
- 某种贪心策略?O(n)
1.代码:
#include<bits/stdc++.h>
using namespace std;
int axis[10010];
int main()
{
int i = 0;
char c;
do{ cin >> axis[++i]; }
while(c = getchar(), c != '\n');
int biggest_area = 0;
for(int m = 1; m <= i; m++)
{
for(int n = m+1; n <= i; n++)
{
int area;
area = (n-m) * (axis[n] > axis[m] ? axis[m] : axis[n]);
if(area > biggest_area) biggest_area = area;
}
}
cout << biggest_area << endl;
return 0;
}
2.代码:
public int maxArea(int[] height) {
int i = 0, j = height.length - 1, res = 0;
while(i < j) {
res = height[i] < height[j] ?
max(res, (j - i) * height[i++]):
max(res, (j - i) * height[j--]);
}
return res;
}
谈一谈对这个贪心策略的理解:
采用方法是双指针法。
策略是每次收缩高度较小的那个指针,如果高度相同则收缩j。
为什么会有效呢?
我认为首先初态是宽度最大的情况,如果收缩较大的指针,水的有效高度不会变大,反而宽度一定会变小;如果收缩较小的指针,有可能会使得新的有效高度变大(当然也可能不变,变小),从而有可能使得水更多(当然也可能宽度减小的影响更大,导致不变,变小)。于是,通过逐步选择可能带来更优情况的原子性的收缩操作(原子性的操作每个状态只有两种),该算法可以遍历每一个潜在更优的res,包含住可能存在于内层的指针状态。
最后总结一下:这个最优状态一定是通过若干个原子性操作得到的,而且不可能由某个状态通过一次绝对无法更优的选择得到,而必然是由某个状态通过一次可能更优的选择得到。