【木桶效应】

题目:

给定一个长度为n的整数数组height。有n条垂线,第i条线的两个端点是(i, 0)和(i, height[i])。 找出其中的两条线,使得它们与x轴共同构成的容器可以容纳最多的水。 返回容器可以储存的最大水量。 说明:你不能倾斜容器。
示例 1:
输入:[输入:[1,8,6,2,5,4,8,3,7]输出:49解释:图中垂直线代表输入数组 [1,8,6,2,5,4,8,3,7]。在此情况下,容器能够容纳水(表示为蓝色部分)的最大值为 49。
示例 2:输入:height = [1,1]输出:1。

思路:

  1. 二重循环?O(n方)
  2. 某种贪心策略?O(n)

1.代码:

#include<bits/stdc++.h>

using namespace std;

int axis[10010];

int main()
{
    int i = 0;
    char c;
    do{ cin >> axis[++i]; }
    while(c = getchar(), c != '\n');

    int biggest_area = 0;
    for(int m = 1; m <= i; m++)
    {
        for(int n = m+1; n <= i; n++)
        {
            int area;

            area = (n-m) * (axis[n] > axis[m] ? axis[m] : axis[n]);
            if(area > biggest_area) biggest_area = area;
        }
    }

    cout << biggest_area << endl;

    return 0;
}

2.代码:

public int maxArea(int[] height) {
        int i = 0, j = height.length - 1, res = 0;
        while(i < j) {
            res = height[i] < height[j] ? 
                max(res, (j - i) * height[i++]): 
                max(res, (j - i) * height[j--]); 
        }
        return res;
    }

谈一谈对这个贪心策略的理解:

采用方法是双指针法。

策略是每次收缩高度较小的那个指针,如果高度相同则收缩j。

为什么会有效呢?

我认为首先初态是宽度最大的情况,如果收缩较大的指针,水的有效高度不会变大,反而宽度一定会变小;如果收缩较小的指针,有可能会使得新的有效高度变大(当然也可能不变,变小),从而有可能使得水更多(当然也可能宽度减小的影响更大,导致不变,变小)。于是,通过逐步选择可能带来更优情况的原子性的收缩操作(原子性的操作每个状态只有两种),该算法可以遍历每一个潜在更优的res,包含住可能存在于内层的指针状态。

最后总结一下:这个最优状态一定是通过若干个原子性操作得到的,而且不可能由某个状态通过一次绝对无法更优的选择得到,而必然是由某个状态通过一次可能更优的选择得到。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值