【一个简单的整数问题】

问题

在这里插入图片描述


TLE代码

#include <bits/stdc++.h>
using namespace std;
const int N = 1e5+10;
int b[N];
void add(int l, int r, int d)
{
    b[r+1] -= d;
    b[l] += d;
}
int query(int x)
{
    int retval = 0;
    for(int i = 1; i <= x; i++)
    {
        retval += b[i];
    }
    return retval;
}
int main()
{
    int n, m;
    scanf("%d%d", &n, &m);
    for(int i = 1; i <= n; i++)
    {
        int tmp;
        scanf("%d", &tmp);
        add(i, i, tmp);
    }
    for(int i = 1; i <= m; i++)
    {
        char op;
        scanf(" %c", &op);
        if(op == 'C')
        {
            int l, r, d;
            scanf("%d%d%d", &l, &r, &d);
            add(l, r, d);
        }
        else if(op == 'Q')
        {
            int x;
            scanf("%d", &x);
            printf("%d\n", query(x));
        }
    }
    
    return 0;
}

假设n=1e5, m=1e5, 操作全是Q,则操作次数达到
1 0 10 10^{10} 1010


正确代码

#include <bits/stdc++.h>
using namespace std;
const int N = 1e5+10;
int b[N];
int n, m;
int lowbit(int x)
{
    return x & (-x);
}
void update(int x, int d)
{
    for(; x <= n; x += lowbit(x))
    {
        b[x] += d;
    }
}
int query(int x)
{
    int retval = 0;
    for(; x >= 1; x -= lowbit(x))
    {
        retval += b[x];
    }
    return retval;
}
int add(int l, int r, int d)
{
    update(l, d);
    update(r+1, -d);
}
int main()
{
    scanf("%d%d", &n, &m);
    for(int i = 1; i <= n; i++)
    {
        int tmp;
        scanf("%d", &tmp);
        add(i, i, tmp);
    }
    for(int i = 1; i <= m; i++)
    {
        char op;
        scanf(" %c", &op);
        if(op == 'C')
        {
            int l, r, d;
            scanf("%d%d%d", &l, &r, &d);
            add(l, r, d);
        }
        else if(op == 'Q')
        {
            int x;
            scanf("%d", &x);
            printf("%d\n", query(x));
        }
    }
    
    return 0;
}

思考

对比前缀和、差分和树状数组
算法目的单次操作复杂度
前缀和快速求子段和区间求和 O ( 1 ) O(1) O(1)    \; 区间修改 O ( n ) O(n) O(n)
差分快速子段修改区间修改 O ( 1 ) O(1) O(1)    \; 单点查询 O ( n ) O(n) O(n)
树状数组均衡上述目的,同时是动态版前缀和单点修改 O ( l o g n ) O(logn) O(logn)    \; 区间求和 O ( l o g n ) O(logn) O(logn)
差分+树状数组均衡差分    \; 单点查询 O ( l o g n ) O(logn) O(logn)

区间修改指的是区间加减 能够区间求和就自然可以单点查询
差分+树状数组的思路:树状数组维护差分序列,通过树状数组的单点修改操作进行差分的区间修改,通过树状数组的区间求和优化差分的单点查询


总结树状数组

在这里插入图片描述
求区间和要想到 (1)
单点修改要想到 (3)

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值