对n质因数分解和对n!质因数分解

  • 对n质因数分解
    • 不涉及质数筛
    • 枚举质因数(较小的,实际上枚举的是所有较小的因数)
    • 是约数就往死里除尽
    • 注意万一自己本身是质因数,所以需要特判

代码

for (int p = 2; p * p <= n; p++)
{
    if (n % p == 0)
    {
        int s = 0;
        while (n % p == 0)
        {
            s++;
            n /= p;
        }
        ps.push_back({p, s});
    }
}
if(n > 1) ps.push_back({n, 1});
  • 对n!质因数分解
    • 涉及质因数分解
    • 枚举质数
    • 每次拿n除p,结果求和,n要更新(这一点很巧妙,根本没有产生n! ,利用的是n 之前的数就是所有出现的因子,利用除法不断求p, p*p, p*p*p的倍数的个数,这些数的和,就是质因数p对应的指数)

代码(这里是对n!的分解,最后利用约数公式计算约数的个数)

#include <bits/stdc++.h>
using namespace std;
#define x first
#define y second
typedef long long LL;
typedef pair<int, int> PII;

vector<PII> ps;
const int mod = 1e9+7; 
const int N = 1e6+10;
int primes[N], cnt;
bool st[N];
void get_primes(int n)
{
    for(int i = 2; i <= n; i++)
    {
        if(!st[i]) primes[++cnt] = i;
        for(int j = 1; primes[j] * i <= n; j++)
        {
            st[primes[j] * i] = true;
            if(i % primes[j] == 0) break;
        }
    }
}
int main()
{
    int n;
    cin >> n;
    get_primes(n);
    for(int i = 1; i <= cnt; i++)
    {
        int p = primes[i];
        LL s = 0;
        int t = n;
        while(t)
        {
            s = s + t / p;
            t /= p;
        }
        ps.push_back({p, s});
    }
    
    LL ans = 1;
    for(auto c : ps)
    {
        int p = c.x, s = c.y;
        ans = (ans * (s+1)) % mod;
    }
    cout << ans % mod;
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值