赫夫曼树——计算WPL及字符编码

目录 

1..赫夫曼树概

2.计算WPL

1)图示

2)计算

3.计算字符编码

1)图示

2)Huffman编码


1.赫夫曼树概述

HuffmanTree因为翻译不同所以有其他的名字:赫夫曼树、霍夫曼树、哈夫曼树。

赫夫曼树,又称最优数,是一类带权路径长度最短的数,有着广泛的应用。

这里我们提出两个问题加深对最优二叉树的理解。

2.计算WPL

问题:设给定权值集合w={3,5,7,8,11,12},请构造关于w的一颗huffman树,并求其加权路径长度WPL

1)图示:

 

构造解释:组合最小的两个数做组合,比如3和5在集合中最小,我们组成的新值为8此时我们由原来的集合变为{8,7,8,11,12},依次类推。

2)计算 

WPL路经长为:叶子结点(也就是没有任何分支的节点)*路径数(就是从上——>下的连线数)。

WPL=12*2+7*3+3*4+5*4+8*2+11*2=115。

3.计算字符编码

问题:假设通信的电文是由字符集{a,b,c,d,e,f,g}中的字符构成,这8个字符在电文中出现的概率分别为{0.07,0.19,0.02,0.06,0.32,0.03,0.21,0.10},求出每个字符的哈夫曼编码。

1)图示:

 这里我将概率乘以100%方便观察,然后我们将对应的字母读入二叉树图示如下:

二叉树二进制编码为左0右1

2)Huffman编码:

a:0010   

b:10

c:00000

d:0001

e:01

f:00001

g:11

h:0011  

  • 2
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 2
    评论
赫夫曼编码的平均码长可以通过以下公式计算: 平均码长 = Σ(每个字符的出现概率 × 对应编码的位数) 其中,每个字符的出现概率可以通过给定的数据计算得出,对应编码的位数可以通过构建赫夫曼编码得到。 举个例子,假设有以下字符及其出现频率: 字符 | A | B | C | D | E 频率 | 0.2 | 0.3 | 0.1 | 0.15 | 0.25 首先需要构建赫夫曼编码,可以按照以下步骤进行: 1. 将所有字符按照出现频率从小到大排序,得到:C, D, A, E, B 2. 取出出现频率最小的两个字符,将它们作为叶子节点构建一个二叉,其权值为这两个字符的出现频率之和,得到以下形结构: 0.25 / \ C D 3. 将剩余的字符按照出现频率从小到大排序,得到:A, E, B 4. 取出出现频率最小的两个字符,将它们作为叶子节点构建一个二叉,其权值为这两个字符的出现频率之和,得到以下形结构: 0.4 / \ 0.2 0.2 / \ / \ A E B - 5. 将剩余的字符按照出现频率从小到大排序,得到:B 6. 取出出现频率最小的两个字符,将它们作为叶子节点构建一个二叉,其权值为这两个字符的出现频率之和,得到以下形结构: 1 / \ 0.4 0.6 / \ / \ A E B CD 最终得到的赫夫曼编码为: 字符 | A | B | C | D | E 编码 | 00 | 1 | 101 | 100 | 01 根据公式计算平均码长: 平均码长 = 0.2 × 2 + 0.3 × 1 + 0.1 × 3 + 0.15 × 3 + 0.25 × 2 = 1.95 因此,对于给定的数据,赫夫曼编码的平均码长为1.95位。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值