Project Euler_Problem 129_Repunit Divisibility

原题目:

题目大意:R(n)为一个全由1组成的n位数, 已知,对于任何一个不可以被2或者5整除的数x,都存在一个若干R(n),使得R(n)可以被x整除,问这个能让最小的R(n)都>100万的x,是多少。

解题思路:

代码:

ll ans1 = 0,ans2=0;
void solve() {
    ll i, j,k,x,y,p,q;
    ll N = 2000000;
    
    for (i = 999900; i <= N; i++) {
        if (i % 2 == 0 || i % 5 == 0)continue;
        for (k = 2; k <= 2000000; k++) {
            if (M.Prime.prime_pow(10, k, 9 * i) == 1) {
                if (k > ans2) {
                    printf("%lld %lld\n", i, k);
                    ans2 = k;
                }
                break;
            }
        }
        if (k > 1000000) {
            ans1 = i; break;
        }
    }

    printf("%lld\n", ans1);
}

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值