Project Euler_Problem 193_Few Repeated Digits_欧拉筛+容斥公式

本文介绍了如何使用解题思路voidserch和voidsolve函数处理一个与素数和分数有关的问题,通过计算N除以素数的乘积的逆元来优化求解过程。代码展示了在给定的大整数N下,如何利用素数分解来计算答案(N-ans1)。
摘要由CSDN通过智能技术生成

原题目:

题目大意:

解题思路:

代码:


void serch(ll I,ll sum,ll used) {
    ll i, j, l, x,y;

    
    for (i = 1; i < I; i++) {
        if (sum * D[i] > N)break;
        x = sum * D[i];
        y = N / x;

        if (used % 2 == 0) {
            ans1 = ans1 - y;
        }
        else {
            ans1 = ans1 + y;
        }

        serch(i, x, used + 1);

    }

}


void solve() {
    ll i, j,k,x,y,z,p,q,u,v;
    N = (( (ll)1 )<<50), NN = 4;
    //N = 20;
    double a, b, c,d;
    M.NT.get_prime_Euler(100000000);
    
    for (i = 1; i <= M.NT.pcnt; i++) {
        x = M.NT.prime[i];
        if (x * x > N)break;
    }

    ll len = i - 1;

    for (i = 1; i <= len; i++) {
        D[i] = M.NT.prime[i] * M.NT.prime[i];
        ans1 = ans1 + N / D[i];
    }

    for (i = len; i >= 1; i--) {
        serch(i, D[i], 2);
    }
    

    printf("%lld\n",N-ans1);
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值