自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(17)
  • 收藏
  • 关注

原创 Shell笔记1

单分支两判断多判断如何写一个例子?

2024-06-05 20:15:54 151

原创 Linux学习笔记

md5sumsha1sum(更多)对镜像文件验证是否为原文件。计算校验值,与发布校验值比较。

2024-06-04 23:14:41 318

原创 LINUX笔记 命令(3)

行首:^行尾:$. 代表任意一个字符(注意与通配符中的?区分)主要是掌握正则表达式。

2024-06-04 19:04:08 934

原创 linux笔记2(查看文件)

这里是覆盖原有内容。只能看到最后一页。注意行号显示命令。在Linux shell脚本和命令行中,>,它们用于控制输入输出流的方向。尽管它们都涉及文件和数据流,但它们的功能和用途是不同的。操作符用于重定向标准输入(stdin)。当你使用时,你实际上是在告诉 shell 从指定的文件读取输入,而不是从键盘(默认的标准输入)。这条myfile.txt,并将其传递给cat命令处理,而不是等待用户从键盘输入。>>操作符用于追加重定向标准输出(stdout)。当你使用>>时,你是在告诉 shell 将命令的输出。

2024-06-03 21:28:53 515

原创 linux笔记(基础命令操作)

基础命令:资料来源:杭州电子科技大学周旭老师的课程资料(无pdf,只能在线观看)

2024-06-03 21:05:28 1019 2

原创 数据挖掘—数据处理基本操作

中,对于每个学生和班级组合('personid' 和 'clazzid'),统计其参加考试的次数('person_clazz_exam_count')。最终的结果是一个包含每个班级平均分和标准差的 DataFrame,其中包含 'clazzid'、'class_mean' 和 'class_std' 三列。在这里,它将 'new_score' 列的非缺失值应用到 'score' 列,如果 'new_score' 列的值是缺失的,则保持 'score' 列不变。这有助于分析每个学生在不同班级中的成绩表现。

2023-12-27 14:39:43 1168 2

原创 数据挖掘—实验2,聚类分析

本教程说明了使用不同的Python聚类算法实现的示例。k均值、谱聚类和DBScan之类的算法旨在创建数据的不相交分区,而单链接,完全链接和组平均算法则旨在生成簇的层次结构。

2023-12-22 23:08:39 1567

原创 校园导航系统(图实现)数据结构课程实践

输入:起始顶点索引 (start)、目标顶点索引 (destination)、起始点到各点的最短距离 (distance) 和最短路径中的前一个节点 (previous)。输入:起始顶点索引 (start)、目标顶点索引 (destination)、节点是否被访问的标志 (visited) 和当前路径 (path)。输入:起始顶点索引 (from)、目标顶点索引 (to)、边的长度 (length) 和描述 (description)。

2023-12-22 13:51:34 2286 1

原创 PTA习题7-3 深入虎穴

著名的王牌间谍 007 需要执行一次任务,获取敌方的机密情报。已知情报藏在一个地下迷宫里,迷宫只有一个入口,里面有很多条通路,每条路通向一扇门。每一扇门背后或者是一个房间,或者又有很多条路,同样是每条路通向一扇门…… 他的手里有一张表格,是其他间谍帮他收集到的情报,他们记下了每扇门的编号,以及这扇门背后的每一条通路所到达的门的编号。007 发现不存在两条路通向同一扇门。内线告诉他,情报就藏在迷宫的最深处。但是这个迷宫太大了,他需要你的帮助 —— 请编程帮他找出距离入口最远的那扇门。

2023-12-03 23:57:43 1206

原创 数据挖掘-实验二笔记(分类 Classification, 6.1 脊椎动物(Vertebrate)数据集,决策树/SVM)

此参数指示pandas应该从CSV文件的第一行推断列名。换句话说,CSV文件的第一行被视为包含列名的标题。这段代码对data中的'Class'列进行了替换操作。具体来说,它使用replace方法将'fishes'、'birds'、'amphibians'和'reptiles'这些值替换为'non-mammals'。这意味着将这些类别中的动物都重新分类为非哺乳动物。使用 Pandas交叉表 来检查“Warm-blooded”和“Gives Birth”属性与类别标签(是否为哺乳动物)之间的关系。

2023-11-24 00:15:09 1475 1

原创 深度学习模型Lenet5/GoogleNet的代码(TensorFlow)

【代码】深度学习模型Lenet5/GoogleNet的代码(TensorFlow)

2023-11-22 20:50:55 494

原创 数据结构-二叉树-头歌(交换左右子树/寻找最长路径(长度及路径)/WPL/双序遍历/二叉树最大宽度/二叉树表达数)

【代码】数据结构-二叉树-头歌(交换左右子树/寻找最长路径(长度及路径)/WPL/双序遍历/二叉树最大宽度/二叉树表达数)

2023-11-17 21:17:46 547

原创 seaborn库学习笔记

当然,除了控制矩形分布、密度曲线及边际毛毯是否显示,还可以通过更丰富的参数控制他们展示的细节,这些通过参数 'hist_kws' 、'kde_kws' 、'reg_kws' 来进行设置,因为其中涉及到多个参数,参数间用逗号隔开,参数外面用大括号括住。设置'hue'参数,对x轴的数据进行细分,细分的条件就是'hue'的参数值,比如这里我们的x轴是'class'(仓位等级),我们将其按'sex'(性别)再进行细分。lmplot() 可以设置hue,进行多个类别的显示,而 regplot() 是不支持的。

2023-11-09 22:56:51 108 1

原创 SVM学习笔记2

强对偶性原来:①变为:也就是说,最大的里面挑出来的最小的也要比最小的里面挑出来的最大的要大。这关系实际上就是弱对偶关系,而强对偶关系是当等号成立时,即如果 f 是凸优化问题,强对偶性成立。而我们之前求的 KKT 条件是强对偶性的。

2023-11-09 14:30:41 53 1

原创 深度学习,线性神经网络-卷积(现代卷积网络)

AlexNet由八层组成:五个卷积层,两个全连接隐藏层和一个全连接输出层。2) AlexNet使用ReLU而不是sigmaid作为其激活函数。给出了一个观点:使用不同大小的卷积核组合是有利的。AlexNet比LetNet要深.1吸收了NiN中串联网络的思想。不会存在梯度消失,残差神经网络。消耗多,效果好 稠密神经网络。含并行 ,不同维度卷积层。6.卷积神经网络LeNet。使深层次的网络得以训练。1.1.1现代卷积网络。4.多输入多输出通道。

2023-11-09 09:43:29 77 1

原创 支持向量机(SVM)学习笔记

什么是支持向量机?支持向量机(support vector machines, SVM)是一种二分类模型,它的基本模型是定义在特征空间上的,间隔最大使它有别于感知机;SVM还包括,这使它成为实质上的非线性分类器。SVM的的学习策略就是间隔最大化,可形式化为一个求解凸二次规划的问题,也等价于正则化的合页损失函数的最小化问题。SVM的的学习算法就是求解凸二次规划的最优化算法。首先要理解什么是在二维空间上,两类点被一条直线完全分开叫做线性可分其次是为了使这个超平面更具。

2023-11-09 00:04:06 77 1

原创 用双向循环链表实现长整数加减乘除(四则运算)——数据结构课程实践

/ 定义链表节点结构int data;Node* next;Node* prev;私有部分private:Node* head;// 头结点// 符号位公有部分:BigInt构造函数public:BigInt() {判断长正数是否为0//判断是否为0在链表尾部插入数据// 在链表尾部插入数据移除链表开头多余的零值节点// 移动到第一个非零节点插入数据到链表头部// 插入数据到链表头部。

2023-11-08 11:14:46 1653 5

第四章:向量组的线性相关性.pdf

第四章:向量组的线性相关性.pdf

2023-12-26

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除