人工智能
文章平均质量分 67
穆月月
大二在学计科!
展开
-
支持向量机(SVM)学习笔记
什么是支持向量机?支持向量机(support vector machines, SVM)是一种二分类模型,它的基本模型是定义在特征空间上的,间隔最大使它有别于感知机;SVM还包括,这使它成为实质上的非线性分类器。SVM的的学习策略就是间隔最大化,可形式化为一个求解凸二次规划的问题,也等价于正则化的合页损失函数的最小化问题。SVM的的学习算法就是求解凸二次规划的最优化算法。首先要理解什么是在二维空间上,两类点被一条直线完全分开叫做线性可分其次是为了使这个超平面更具。原创 2023-11-09 00:04:06 · 78 阅读 · 1 评论 -
SVM学习笔记2
强对偶性原来:①变为:也就是说,最大的里面挑出来的最小的也要比最小的里面挑出来的最大的要大。这关系实际上就是弱对偶关系,而强对偶关系是当等号成立时,即如果 f 是凸优化问题,强对偶性成立。而我们之前求的 KKT 条件是强对偶性的。原创 2023-11-09 14:30:41 · 54 阅读 · 1 评论