自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(25)
  • 收藏
  • 关注

原创 Transformer:引领深度学习新时代的架构

Transformer 架构作为深度学习领域的一项重要创新,已经在多个领域取得了巨大的成功。它的出现改变了人们对序列处理任务的认识,为解决各种复杂的问题提供了新的思路和方法。随着技术的不断发展,Transformer 架构有望在更多领域发挥重要作用,推动深度学习技术不断向前发展。无论是研究者还是开发者,都应该密切关注 Transformer 的发展趋势,不断探索其在不同领域的应用潜力。

2025-04-23 23:34:22 1474

原创 Transformer 里 Self-Attention:解锁序列理解的新视角

在深度学习的世界中,Transformer 架构近年来大放异彩,而 Self-Attention(自注意力)机制则是 Transformer 的核心驱动力。它革新了模型处理序列数据的方式,无论是在自然语言处理、计算机视觉还是其他领域,都展现出强大的威力。

2025-04-10 13:12:16 591

原创 OpenCV:开启计算机视觉的大门

OpenCV是一个的跨平台计算机视觉库,可以运行在Linux、Windows和Mac OS操作系统上。它轻量级而且高效——由一系列C函数和少量C++类构成,同时也提供了Python接口,实现了图像处理和计算机视觉方面的很多通用算法。在本文中,将介绍OpenCV库,包括它的主要模块和典型应用场景。

2025-04-09 10:00:00 865

原创 学习率调整策略:优化深度学习训练的关键

在深度学习的训练过程中,学习率(Learning Rate)是一个至关重要的超参数,它决定了模型参数更新的步长。因此,合理地调整学习率对于提高模型的性能和训练效率至关重要。

2025-04-08 10:00:00 2067

原创 Batch Normalization:深度学习训练的加速引擎

Batch Normalization 是深度学习领域的一项重要技术,它通过对输入数据进行归一化处理,解决了内部协变量偏移问题,加速了模型的训练过程,提高了模型的泛化能力。

2025-04-07 00:00:00 788

原创 跳跃连接(Skip Connection)与残差连接(Residual Connection)

跳跃连接是一种在深度神经网络中广泛应用的技术,它允许信息在网络中跨层直接传递。在传统的神经网络里,每一层的输出仅仅是前一层输出经过特定变换后的结果。而在具备跳跃连接的网络中,某一层的输出不仅能够包含前一层的变换结果,还可以直接包含更早层的输出。

2025-04-06 00:00:00 1596

原创 深度解析:跳跃连接、Transformer 与 ResNet 的融合创新

ResNet 通过跳跃连接突破了 CNN 的深度限制,Transformer 通过自注意力机制革新了序列建模,而两者的结合则在保持高效局部特征提取的同时,增强了全局语义理解。未来,随着动态架构设计和硬件加速技术的发展,这类混合模型有望在计算机视觉、自然语言处理等领域实现更广泛的应用。

2025-04-05 15:48:02 891

原创 Matplotlib:数据可视化的艺术与科学

在数据分析与机器学习领域,可视化是理解数据的重要桥梁。Matplotlib 作为 Python 最流行的绘图库,提供了从简单折线图到复杂 3D 图表的完整解决方案。本文将通过实际案例,带您从基础绘图到高级定制全面掌握 Matplotlib 的核心能力。

2025-04-04 18:27:34 775

原创 从零开始学 Flask:构建你的第一个 Web 应用

当我第一次接触 Flask 时,仅仅用了 5 行代码就写出了一个能运行的 Web 应用。这种简洁到近乎诗意的体验,让我瞬间理解了为什么它会成为开发者的心头好。不同于某些框架的大包大揽,Flask 就像一位留白高手,让开发者在自由的画布上挥洒创意。若未安装,可从Python 官网下载。使用 pip 包管理器安装:二、第一个 Flask 应用:Hello World创建一个名为的文件,输入以下代码:在浏览器访问,你会看到 "

2025-03-31 18:21:32 1374

原创 TensorRT:高性能深度学习推理的利器

TensorRT 是 NVIDIA 推出的一个用于高性能深度学习推理的 SDK。它可以对已经训练好的深度学习模型进行优化,从而显著提高推理的速度和效率。TensorRT 支持多种深度学习框架,如 TensorFlow、PyTorch、ONNX 等,这意味着我们可以将使用这些框架训练好的模型轻松地转换为 TensorRT 引擎,以获得更好的推理性能。

2025-03-17 12:47:14 1144

原创 ONNX:统一深度学习工作流的关键枢纽

在深度学习领域,模型创建与部署的割裂曾是核心挑战。不同框架训练的模型难以在多样环境部署,而 ONNX(Open Neural Network Exchange)作为开放式神经网络交换格式,搭建起从模型创建到部署的统一桥梁,完美诠释 “连接创造与部署” 的核心价值。

2025-03-16 15:46:21 989

原创 模型量化与剪枝:深度学习模型优化的得力助手

在深度学习领域,模型性能往往与模型规模紧密相关。更大、更复杂的模型通常能展现出更卓越的表现。然而,这种规模的增长也带来了诸多棘手的问题。模型的存储需求急剧攀升,推理时所需的计算资源大幅增加,这不仅限制了模型在资源有限环境(如移动设备、边缘计算设备)中的应用,还可能导致高昂的成本。为了突破这些瓶颈,模型量化与模型剪枝技术应运而生,它们成为优化深度学习模型的关键手段。

2025-03-15 19:05:22 1040

原创 Python ——Turtle 库(绘图指南)

turtle 库作为 Python 的一个有趣且实用的库,为我们提供了一种独特的方式来创建图形和动画。从简单的线条绘制到复杂的艺术图案创作,再到编程教学中的应用,它都展现出了强大的功能和魅力。

2025-03-04 09:48:18 3631 1

原创 全面了解机器学习:监督、无监督、半监督、深度和强化学习

在机器学习的广袤宇宙中,不同的学习模式宛如璀璨星辰,各自闪耀着独特的光芒,共同照亮了从数据到智能的探索之路。

2025-03-01 17:03:43 1384

原创 全面了解机器学习:回归、分类、分割与检测任务

在机器学习的广袤天地中,回归任务和分类任务构成了基础的两大支柱,而分割任务与检测任务则是在此基础上衍生出的重要应用方向。

2025-02-28 10:32:19 1365

原创 小波卷积:扩大卷积感受野新方案

本文介绍了一种基于小波变换的即插即用的 WTConv2d 模块,它能够在不引入过多参数的情况下有效扩大卷积的感受野。通过将其应用于深度可分离卷积中,我们可以进一步提升模型的性能。这种模块可以方便地集成到现有的 CNN 架构中,为计算机视觉任务带来更好的效果。

2025-02-07 23:50:48 843

原创 探索 DeepSeek:人工智能领域的新兴力量

在当今科技飞速发展的时代,人工智能(AI)已经成为推动各行业变革的核心驱动力。在众多 AI 企业中,DeepSeek 以其独特的技术和发展理念,逐渐崭露头角,吸引了全球的关注。

2025-02-05 19:14:21 878

原创 深度学习中的损失函数:从原理到实践

在深度学习的广袤领域中,损失函数(Loss Function)宛如指引模型训练方向的北极星,其重要性不言而喻。它不仅量化了模型预测与真实值之间的差距,更是优化算法调整模型参数的依据。

2025-01-17 20:52:35 1226

原创 光学遥感与 SAR 数据:地球观测的 “双目” 视角

在地球观测的宏大版图中,光学遥感数据与合成孔径雷达(SAR)数据犹如人类的双眼,各自以独特视角捕捉着地球的万千气象,为我们勾勒出一幅详尽且立体的地球画卷。

2025-01-12 23:27:05 1753

原创 揭开 Mamba 的神秘面纱:从线性注意力视角出发

在深度学习领域不断发展的今天,新模型和架构如雨后春笋般涌现。其中,Mamba 作为一种具有线性计算复杂度的状态空间模型,在处理各类视觉任务中的高分辨率输入时展现出了惊人的效率。

2025-01-10 18:45:29 1729

原创 高效加法注意力模块(Efficient Additive Attention)

​高效加法注意力模块通过元素级操作替代昂贵的矩阵乘法,并消除显式键值交互,在网络各阶段实现线性复杂度,在多个视觉任务中取得优异性能。但在密集小目标检测方面仍有提升空间,未来工作将聚焦于改进该模块在密集预测任务中的性能。希望通过这篇博客,大家对高效加法注意力模块有了更深入的理解。

2025-01-09 21:08:02 1004

原创 深入浅出卷积操作:开启深度学习视觉之门

在深度学习的奇妙世界里,卷积操作(Convolution)犹如一把神奇的钥匙,解锁了计算机视觉领域无数的宝藏。

2025-01-06 20:03:49 1128

原创 多层感知机(MLP)——深度学习

多层感知机(Multilayer Perceptron,MLP)是人工神经网络的一种基础架构,是对传统感知机的扩展与深化。它由输入层、一个或多个隐藏层以及输出层构成。多层感知机的强大之处在于其能够通过大量的数据进行训练,自动调整各层之间的连接权重,进而对复杂的非线性关系进行建模和拟合,在分类、回归、预测等众多机器学习任务中都有着广泛的应用。

2025-01-05 17:24:00 1526

原创 快速傅里叶变换(图像领域的应用)

FFT 是一种高效计算 DFT 的算法,其主要思想是利用 DFT 的对称性和周期性来减少计算量。最常见的 FFT 算法是 Cooley - Tukey 算法。

2025-01-04 16:07:26 1333

原创 图像领域:注意力机制(含代码)

在图像领域,注意力机制(Attention Mechanism)是一种能够让模型聚焦于图像关键部分的技术,它极大提升了图像相关任务的性能。

2025-01-03 19:00:55 1202

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除