判定一个数组矩阵的对称性

  埃米特证明了别的数学家发现的一些矩阵类的特征根的特殊性质,如现在称为埃米特矩阵的特征根性质等。后来,克莱伯施、布克海姆等证明了对称矩阵的特征根性质。泰伯引入矩阵的迹的概念并给出了一些有关的结论。所谓矩阵对称意为元素以主对角线为对称轴对应相等的矩阵。而主对角线则为线代数学的内容,指从左上角到右下角的那一条对角线。那么副对角线则浅显意知了。


C语言实验- 对称矩阵的判定

输入矩阵的行数,再依次输入矩阵的每行元素,判断该矩阵是否为对称矩阵,若矩阵对称输出“Yes.",不对称输出"No."。


输入格式:输入有多组,每一组第一行输入一个正整数N(N<=20),表示矩阵的行数(若N=0,表示输入结束)。
下面依次输入N行数据。

输出格式:若矩阵对称输出“Yes.",不对称输出”No.”。


#include <stdio.h>
int main()
{
    int n, i,j , num = 0, m;
    while (scanf("%d", &n) != EOF &&n!=0)
    {
       m = n - 1;
        m= 2 * m - 1;
        int b[n][n];
        for (i = 0; i < n; i++) {
            for (j = 0; j < n; j++) {
                scanf("%d", &b[i][j]);
            }
        }
        for (i = 0; i< n; i++) {
            for (j = 0; j < n; j++) {
                if (b[i][j] == b[j][i]) 
                {
                    if (i == j) 
                        continue;
                    num++;
                }
            }
        }
        if (num / 2 == m) {
            printf("Yes.\n");
        }
        else {
            printf("No.\n");
        }
    }return 0;
}

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值