以下文字摘自《灵机一动·好玩的数学》:“狼人杀”游戏分为狼人、好人两大阵营。在一局“狼人杀”游戏中,1 号玩家说:“2 号是狼人”,2 号玩家说:“3 号是好人”,3 号玩家说:“4 号是狼人”,4 号玩家说:“5 号是好人”,5 号玩家说:“4 号是好人”。已知这 5 名玩家中有 2 人扮演狼人角色,有 2 人说的不是实话,有狼人撒谎但并不是所有狼人都在撒谎。扮演狼人角色的是哪两号玩家?
本题是这个问题的升级版:已知 N 名玩家中有 2 人扮演狼人角色,有 2 人说的不是实话,有狼人撒谎但并不是所有狼人都在撒谎。要求你找出扮演狼人角色的是哪几号玩家?
输入格式:
输入在第一行中给出一个正整数 N(5≤N≤100)。随后 N 行,第 i 行给出第 i 号玩家说的话(1≤i≤N),即一个玩家编号,用正号表示好人,负号表示狼人。
输出格式:
如果有解,在一行中按递增顺序输出 2 个狼人的编号,其间以空格分隔,行首尾不得有多余空格。如果解不唯一,则输出最小序列解 —— 即对于两个序列 A=a[1],...,a[M] 和 B=b[1],...,b[M],若存在 0≤k<M 使得 a[i]=b[i] (i≤k),且 a[k+1]<b[k+1],则称序列 A 小于序列 B。若无解则输出 No Solution
。
输入样例 1:
5
-2
+3
-4
+5
+4
输出样例 1:
1 4
输入样例 2:
6
+6
+3
+1
-5
-2
+4
输出样例 2(解不唯一):
1 5
输入样例 3:
5
-2
-3
-4
-5
-1
输出样例 3:
No Solution
思路:
提取条件: 1. 只有两人撒谎,且其中一个是狼人 2. 只有两个狼人
暴力枚举就ok了! 两层循环,每次假设下标为 i j 的玩家为狼人,然后再遍历找撒谎人,再判断撒谎人数是否只有2个且其中一个是狼人,如果合法则直接输出后return 0; 因为题目要求输出最小序列,所以一旦合法当前 i j 就是最小序列直接输出后结束!!! (i从0开始, j从i+1开始遍历,所以一旦合法本结果就是最小序列!) 最后没有合法结果就输出 No Solution
#include<bits/stdc++.h>
using namespace std;
int main(void) {
int n;
scanf("%d", &n);
//下标i对应编号为i+1的玩家
int a[n];
for (int i = 0; i < n; ++i)
scanf("%d", &a[i]);
//假设i j 对应的玩家是狼人,然后判断是否符合条件
for (int i = 0; i < n - 1; ++i)
for (int j = i + 1; j < n; ++j) {
//事实数组,0代表事实上是好人,1代表事实上是狼人
int b[n] = {0};
b[i] = 1;
b[j] = 1;
//撒谎数组,撒谎人的下标存进去
map<int, int> v;
//判断谁撒谎
for (int k = 0; k < n; ++k) {
//如果k说a[k]是好人,但b[a[k]]为1则k撒谎
if (a[k] > 0 && b[a[k] - 1]) v[k] = 1;
//如果k说a[k]是狼人,但b[a[k]]为0则k撒谎
if (a[k] < 0 && !b[abs(a[k]) - 1]) v[k] = 1;
}
//只能有两个人撒谎,且其中一个为狼人!!!!!
if (v.size() == 2 && ((v[j] == 1 && v[i] != 1) || (v[j] != 1 && v[i] == 1))) {
printf("%d %d", i + 1, j + 1);
return 0;
}
}
printf("No Solution");
return 0;
}