第一章 SparkSQL概述
1.1 SparkSQL是什么
Spark SQL 是Spark用于结构化数据处理的Spark模块
1.2 Hive and SparkSQL
SparkSQL前身是Shark ,给熟悉RDBMS但又不理解MapReduce的技术人员提供快速上手的工具。
Hive 是早期唯一运行在Hadoop上的SQL-on-Hadoop 工具。但那时MapReduce计算过程中大量的中间磁盘落地过程消耗量大量的I/O,降低了运行效率,为了提高SQL-on-Hadoop,大量的工具开始产生,其中突出的是:
- Drill
- Impala
- Shark
Shark是伯克利实验室Spark生态环境的组件之一,是基于Hive所开发的工具,它修改了下图所示的右下角的内存管理、物理计划、执行三个模块,并使之能运行在Spark引擎上。
Shark的出现,使得SQL-on-Hadoop的性能比Hive有了10-100倍的提高。
但是,随着Spark的发展,对于野心勃勃的Spark团队来说,Shark对于Hive的太多依赖(如采用Hive的语法解析器、查询优化器等等),制约了Spark的One Stack Rule Them All的既定方针,制约了Spark各个组件的相互集成,所以提出了SparkSQL项目。SparkSQL抛弃原有Shark的代码,汲取了Shark的一些优点,如内存列存储(In-Memory Columnar Storage)、Hive兼容性等,重新开发了SparkSQL代码; - 数据兼容方面,SparkSQL不但兼容Hive,还可以从RDD ,parquet文件,JSON文件中获取数据,未来版本甚至支持获取RDBMS数据以及cassandra等NOSQL数据;
- 性能优化方面,除了In-Memory ColumnarStorage、byte-code generation等优化技术外、将会引进Cost Model对查询进行动态评估、获取最佳物理计划等等;
- 组件扩展方面,无论是SQL的语法解析器,分析器,还是优化器都可以重新定义,进行扩展。
- 对于开发人员来讲,SparkSQL可以简化RDD的开发,提高开发效率,且执行效率非常快,所以实际工作中,基本上采用的就是SparkSQL。Spark SQL为了简化RDD的开发,提高开发效率,提供了2个编程抽象,类似Spark Core中的RDD
- DataFrame
- DataSet
1.3 SparkSQL特点
1.3.1 易整合
无缝的整合了SQL查询和Spark编程
1.3.2 统一的数据访问
使用相同的方式连接不同的数据源
1.3.3兼容Hive
在已有的仓库是直接运行SQL或者HiveQL
1.3.4 标准数据连接
通过JDBC或者ODBC来连接
1.4 DataFrame是什么
在Spark中,DataFrame是一种以RDD为基础的分布式数据集类似于传统数据库的二维表格。DataFrame与RDD主要区别在于,前者带有schema元信息,即DataFrame所表示的二维表数据集的每一列都带有名称和类型。这使得Spark SQL得以洞察更多的结构信息,从而对藏于DataFrame背后的数据源以及作用于DataFrame之上的变换进行了针对性的优化,最终达到大幅提升运行时效率的目标。反观RDD,由于无从得知所存数据元素的具体内部结构,Spark Core只能在stage层面进行简单、通用的流水线优化。
同时,与Hive类似,DataFrame也支持嵌套数据类型(struct,array,map)。从API易用性来看,DataFrame APi提供的是一套高层的关系操作,比函数式RDD API要更加友好,门槛更低
DataFrame是为数据提供了Schema的视图。可以把它当做数据库中的一张表来对待
DataFrame也是懒执行的,但性能上比RDD要高,主要原因:优化的执行计划,即查询计划通过Spark catalyst optimiser进行优化。比如下面一个例子:
为了说明查询优化,我们来看上图展示的人口数据分析的示例。图中构造了两个DataFrame,将它们join之后又做了一次filter操作。如果原封不动地执行这个执行计划,最终的执行效率是不高的。因为join是一个代价较大的操作,也可能会产生一个较大的数据集。如果我们能将filter下推到 join下方,先对DataFrame进行过滤,再join过滤后的较小的结果集,便可以有效缩短执行时间。而Spark SQL的查询优化器正是这样做的。简而言之,逻辑查询计划优化就是一个利用基于关系代数的等价变换,将高成本的操作替换为低成本操作的过程。
1.5 DataSet是什么
DataSet 是分布式数据集合。DataSet是Spark 1.6中添加的一个新抽象,是DataFrame的一个扩展。它提供了RDD的优势(强类型,使用强大的lambda函数的能力)以及Spark SQL优化执行引擎的优点。DataSet也可以使用功能性的转换(操作map,flatMap,filter等等)。
- DataSet是DataFrame API的一个扩展,是SparkSQL最新的数据抽象
- 用户友好的API风格,既具有类型安全检查也具有DataFrame的查询优化特性;
- 用样例类来对DataSet中定义数据的结构信息,样例类中每个属性的名称直接映射到DataSet中的字段名称;
- DataSet是强类型的,比如可以有DataSet[Car],DataSet[Person].
- DataFrame是DataSet的特例,DataFrame=DataSet[Row],所以可以通过as方法将DataFrame转换为DataSet。Row是一个类型,跟Car、Person这些的类型一样,所有的表结构信息都用Row来表示。获取数据时需要指定顺序
第二章 SparkSQL核心编程
2.1 新的起点
Spark Core中,如果想要执行应用程序,需要首先构建上下文环境对象SparkContext,Spark SQL其实可以理解为对Spark Core的一种封装,不仅仅在模型上进行了封装,上下文环境对象也进行了封装。
在老的版本中,SparkSQL提供两种SQL查询起始点:一个叫SQLContext,用于Spark自己提供的SQL查询;一个叫HiveContext,用于连接Hive的查询。
SparkSession是Spark最新的SQL查询起始点,实质上是SQLContext和HiveContext的组合,所以在SQLContex和HiveContext上可用的API在SparkSession上同样是可以使用的。SparkSession内部封装了SparkContext,所以计算实际上是由sparkContext完成的。当我们使用 spark-shell 的时候, spark框架会自动的创建一个名称叫做spark的SparkSession对象, 就像我们以前可以自动获取到一个sc来表示SparkContext对象一样
2.2 DataFrame
SparkSQL的DataFrameAPI 允许我们使用DataFrame,而不用必须去注册临时表或者生成SQL表达式,DataFrameAPI既有 transformation操作也有action操作。
创建DataFrame
在SparkSQL中,SparkSession是创建DataFrame和执行SQL的入口,创建DataFrame有三种方式:通过Spark的数据源进行创建,从一个存在的RDD进行转换,还可以从HiveTable进行查询返回。
- 从Spark数据源进行创建:
- 查看Spark支持创建文件的数据源格式
- 在Spark的bin/data目录(windows环境)中创建user.json文件
- 读取json文件创建DataFrame
注意:如果从内存中获取数据,spark可以知道数据类型具体是什么。如果是数字,默认作为Int处理;但是从文件中读取的数字,不能确定是什么类型,所以用bigint接收,可以和Long类型转换,但是和Int不能进行转换 - 展示结果 :show
- 从RDD进行转换
- 从Hive Table进行查询返回
SQL语法
SQL语法风格是指我们查询数据的时候使用SQL语句来查询,这种风格的查询必须要有临时视图或者全局视图来辅助
- 对刚刚读取到的DataFrame创建一个临时表(视图)
- 通过SQL语句实现查询
- 结果展示
注意:普通临时表是Session范围内的,如果想应用范围内有效,可以使用全局临时表。使用全局临时表时需要全路径访问,如:global_temp.people
2.2.3DSL语法
DataFrame提供一个特定领域语言(domain-specific language, DSL)去管理结构化的数据。可以在 Scala, Java, Python 和 R 中使用 DSL,使用 DSL 语法风格不必去创建临时视图了
- 创建一个新的DataFrame
- 查看DataFrame的Schema信息
- 只查看"username"列数据,
- 查看"username"列数据以及"age+1"数据
注意:涉及到运算的时候, 每列都必须使用$, 或者采用引号表达式:单引号+字段名
- 查看"age"大于"20"的数据
- 按照“age”分组
2.2.4RDD转化为DataFrame
在IDEA中开发程序时,如果需要RDD与DF或者DS之间互相操作,那么需要引入 import spark.implicits._
这里的spark不是Scala中的包名,而是创建的sparkSession对象的变量名称,所以必须先创建SparkSession对象再导入。这里的spark对象不能使用var声明,因为Scala只支持val修饰的对象的引入。
spark-shell中无需导入,自动完成此操作。
实际开发中,一般通过样例类将RDD转换为DataFrame
2.2.5DataFrame 转换为RDD
DataFrame其实就是对RDD的封装,所以可以直接获取内部RDD
2.3DataSet
DataSet是具有强类型的数据集合,需要提供对应的类型信息。
2.3.1创建DataSet
- 使用样例类序列创建DataSet
- 使用基本类型的序列创建DataSet(这种很少使用)
2.3.2RDD转为DataSet
SparkSQL能够自动将包含有case类的RDD转成DataSet,case类定义了table的结构,case类属性通过反射变成了表的列名。Case类可以包含诸如Seq或者Array等复杂结构
2.3.3DataSet转换为RDD
DataSet其实也是对RDD的封装,所以可以直接获取内部的RDD
2.4 DataFrame和DataSet转换
DataFrame其实是DataSet的特例,所以他们可以互相转换
- DataFrame转换为DataSet
- DataSet转换为DataFrame
2.5.2 三者的区别
- RDD
- RDD一般和spark mllib同时使用
- RDD不支持sparksql操作
- DataFrame
- 与RDD不同,DataFrame每一行类型都固定位Row,每一列的值没办法直接访问,只有通过解析
- DataFrame与DataSet一般不与 spark mllib 同时使用
- DataFrame与DataSet均支持 SparkSQL 的操作,比如select,groupby之类,还能注册临时表/视窗,进行 sql 语句操作
- DataFrame与DataSet支持一些特别方便的保存方式,比如保存成csv,可以带上表头,这样每一列的字段名一目了然
- DataSet
- Dataset和DataFrame拥有完全相同的成员函数,区别只是每一行的数据类型不同。 DataFrame其实就是DataSet的一个特例 type DataFrame = Dataset[Row]
2.5.3 三者的相互转换
2.6 IDEA开发SparkSQL
2.6.1 添加依赖
<groupId>org.apache.spark</groupId>
<artifactId>spark-sql_2.12</artifactId>
<version>3.0.0</version>
</dependency>
2.6.2 代码实现
import org.apache.spark.sql.{DataFrame, Dataset, Row, SparkSession}
import org.apache.spark.SparkConf
import org.apache.spark.rdd.RDD
// 定义样例类
case class User(id:Int,name:String,age:Int)
object SparkSQL01_Demo {
def main(args: Array[String]): Unit = {
//创建上下文环境配置对象
val conf = new SparkConf().setMaster("local[*]").setAppName("SparkSQL")
//创建SparkSession对象
val ss: SparkSession = SparkSession.builder().config(conf).getOrCreate()
//RDD=>DataFrame=>DataSet转换需要引入隐式转换规则,否则无法转换
//spark不是包名,是上下文环境对象名
import ss.implicits._
//读取json文件 创建DataFrame
val df: DataFrame = ss.read.json("F:/worksapce_java/bigdata/SparkSQL/data/person.json")
//df.show
//SQL风格
df.createOrReplaceTempView("user")
//ss.sql("select * from user").show
//DSL 风格语法
//df.select("username","age").show()
//RDD与DataFrame,DataSet互换
val rdd1: RDD[(Int, String, Int)] = ss.sparkContext.makeRDD(List((1,"zhangsan",30),(2,"lisi",28),(3,"wangwu",20)))
// RDD => DataFrame
val df1: DataFrame = rdd1.toDF("id","name","age")
//df1.show()
// DataFrame => DataSet
val ds1: Dataset[User] = df1.as[User]
//ds1.show()
// DataSet=>DataFrame
val df2: DataFrame = ds1.toDF()
//df2.show()
//DataFrame => RDD 返回的RDD类型为Row,里面提供的getXXX方法可以获取字段值,类似jdbc处理结果集,但是索引从0开始
val rdd2: RDD[Row] = df2.rdd
//rdd2.foreach(a=>println(a.getString(1)))
//RDD=>DataSet
val ds2: Dataset[User] = rdd1.map {
case (id, name, age) => User(id, name, age)
}.toDS()
ds2.show()
//DataSet => RDD
val rdd3: RDD[User] = ds2.rdd
ss.stop()
}
}
2.7 自定义函数
用户可以通过spark.udf功能添加自定义函数,实现自定义功能。
2.7.1 UDF
val df: DataFrame = ss.read.json("F:/worksapce_java/bigdata/SparkSQL/data/person.json")
//注册UDF
ss.udf.register("addName",(x:String)=>"Name:"+x)
//创建临时表
df.createOrReplaceTempView("people")
//应用UDF
ss.sql("select addName(name),age from people").show
2.7.2 UDAF
强类型的Dataset和弱类型的DataFrame都提供了相关的聚合函数, 如 count(),countDistinct(),avg(),max(),min()。除此之外,用户可以设定自己的自定义聚合函数。通过继承UserDefinedAggregateFunction来实现用户自定义弱类型聚合函数。从Spark3.0版本后,UserDefinedAggregateFunction已经不推荐使用了。可以统一采用强类型聚合函数Aggregator
接下来通过一个需求讲述什么是UDAF:需求:计算平均年龄
- 实现方式-RDD
val conf: SparkConf = new SparkConf().setAppName("app").setMaster("local[*]")
val sc: SparkContext = new SparkContext(conf)
val res: (Int, Int) = sc.makeRDD(List(("zhangsan", 20), ("lisi", 30), ("wangw", 40))).map {
case (name, age) => {
(age, 1)
}
}.reduce {
(t1, t2) => {
(t1._1 + t2._1, t1._2 + t2._2)
}
}
println(res._1/res._2)
// 关闭连接
sc.stop()
- 实现方式-累加器
class MyAC extends AccumulatorV2[Int,Int]{
var sum:Int = 0
var count:Int = 0
override def isZero: Boolean = {
return sum ==0 && count == 0
}
override def copy(): AccumulatorV2[Int, Int] = {
val newMyAc = new MyAC
newMyAc.sum = this.sum
newMyAc.count = this.count
newMyAc
}
override def reset(): Unit = {
sum =0
count = 0
}
override def add(v: Int): Unit = {
sum += v
count += 1
}
override def merge(other: AccumulatorV2[Int, Int]): Unit = {
other match {
case o:MyAC=>{
sum += o.sum
count += o.count
}
case _=>
}
}
override def value: Int = sum/count
}
- 实现方式 -UDAF-弱类型
/*
定义类继承UserDefinedAggregateFunction,并重写其中方法
*/
class MyAveragUDAF extends UserDefinedAggregateFunction {
// 聚合函数输入参数的数据类型
def inputSchema: StructType = StructType(Array(StructField("age",IntegerType)))
// 聚合函数缓冲区中值的数据类型(age,count)
def bufferSchema: StructType = {
StructType(Array(StructField("sum",LongType),StructField("count",LongType)))
}
// 函数返回值的数据类型
def dataType: DataType = DoubleType
// 稳定性:对于相同的输入是否一直返回相同的输出。
def deterministic: Boolean = true
// 函数缓冲区初始化
def initialize(buffer: MutableAggregationBuffer): Unit = {
// 存年龄的总和
buffer(0) = 0L
// 存年龄的个数
buffer(1) = 0L
}
// 更新缓冲区中的数据
def update(buffer: MutableAggregationBuffer,input: Row): Unit = {
if (!input.isNullAt(0)) {
buffer(0) = buffer.getLong(0) + input.getInt(0)
buffer(1) = buffer.getLong(1) + 1
}
}
// 合并缓冲区
def merge(buffer1: MutableAggregationBuffer,buffer2: Row): Unit = {
buffer1(0) = buffer1.getLong(0) + buffer2.getLong(0)
buffer1(1) = buffer1.getLong(1) + buffer2.getLong(1)
}
// 计算最终结果
def evaluate(buffer: Row): Double = buffer.getLong(0).toDouble / buffer.getLong(1)
}
。。。
//创建聚合函数
var myAverage = new MyAveragUDAF
//在spark中注册聚合函数
spark.udf.register("avgAge",myAverage)
spark.sql("select avgAge(age) from user").show()
- 实现方式 - UDAF - 强类型
// TODO 创建UDAF函数
val udaf = new MyAvgAgeUDAF
// TODO 注册到SparkSQL中
spark.udf.register("avgAge", functions.udaf(udaf))
// TODO 在SQL中使用聚合函数
// 定义用户的自定义聚合函数
spark.sql("select avgAge(age) from user").show
// **************************************************
case class Buff( var sum:Long, var cnt:Long )
// totalage, count
class MyAvgAgeUDAF extends Aggregator[Long, Buff, Double]{
override def zero: Buff = Buff(0,0)
override def reduce(b: Buff, a: Long): Buff = {
b.sum += a
b.cnt += 1
b
}
override def merge(b1: Buff, b2: Buff): Buff = {
b1.sum += b2.sum
b1.cnt += b2.cnt
b1
}
override def finish(reduction: Buff): Double = {
reduction.sum.toDouble/reduction.cnt
}
override def bufferEncoder: Encoder[Buff] = Encoders.product
override def outputEncoder: Encoder[Double] = Encoders.scalaDouble
}
2.8 数据加载和保存
2.8.1 通用的加载和保存方式
SparkSQL提供了通用的保存数据和数据加载的方式,这里的通用指的是使用相同的API,根据不同的参数,读取和保存不同格式的数据,SparkSQL默认读取和保存的文件格式为parquet
- 加载数据
spark.read.load是加载数据的通用方法,如果读取不同格式的数据,可以对不同的数据格式进行设定:
spark.read.format(“…”)[option(“…”)].load(“…”)
format(“…”):指定加载的数据类型,包括"csv"、“jdbc”、“json”、“orc”、“parquet"和"textFile”。
load(“…”):在"csv"、“jdbc”、“json”、“orc”、“parquet"和"textFile"格式下需要传入加载数据的路径
option(”…"):在"jdbc"格式下需要传入JDBC相应参数,url、user、password和dbtable
我们前面都是使用read API 先把文件加载到 DataFrame然后再查询,其实,我们也可以直接在文件上进行查询: 文件格式.文件路径
spark.sql("select * from json.`/opt/module/data/user.json`").show
- 保存数据
对数据类型设置的方法和读取文件一致
保存操作可以使用 SaveMode, 用来指明如何处理数据,使用mode()方法来设置。
有一点很重要: 这些 SaveMode 都是没有加锁的, 也不是原子操作
强调一下,保存文件并不是只生成一个json文件,而是生成一个命名文件夹,追加时只是往文件夹追加文件
2.8.2 Parquet
Spark SQL的默认数据源为Parquet格式。Parquet是一种能够有效存储嵌套数据的列式存储格式。
数据源为Parquet文件时,Spark SQL可以方便的执行所有的操作,不需要使用format。修改配置项spark.sql.sources.default,可修改默认数据源格式。
2.8.3 JSON
Spark SQL 能够自动推测JSON数据集的结构,并将它加载为一个Dataset[Row]. 可以通过SparkSession.read.json()去加载JSON 文件。
**注意:Spark读取的JSON文件不是传统的JSON文件,每一行都应该是一个JSON串。**格式如下:
{"name":"Michael"}
{"name":"Andy", "age":30}
[{"name":"Justin", "age":19},{"name":"Justin", "age":19}]
2.8.4 CSV
Spark SQL可以配置CSV文件的列表信息,读取CSV文件,CSV文件的第一行设置为数据列
spark.read.format("csv").option("sep", ";").option("inferSchema", "true").option("header", "true").load("data/user.csv")
2.8.5 MySQL
Spark SQL可以通过JDBC从关系型数据库中读取数据的方式创建DataFrame,通过对DataFrame一系列的计算后,还可以将数据再写回关系型数据库中。如果使用spark-shell操作,可在启动shell时指定相关的数据库驱动路径或者将相关的数据库驱动放到spark的类路径下。
bin/spark-shell
--jars mysql-connector-java-8.0.26-bin.jar
这里只学习Idea中通过JDBC对Mysql进行操作
- 导入依赖
<dependency>
<groupId>mysql</groupId>
<artifactId>mysql-connector-java</artifactId>
<version>8.0.26</version>
</dependency>
- 读取数据
def main(args: Array[String]): Unit = {
val conf: SparkConf = new SparkConf().setMaster("local[*]").setAppName("JDBC")
val ss: SparkSession = SparkSession.builder().config(conf).getOrCreate()
import ss.implicits._
//方式一 : 通用的load方法读取
ss.read.format("jdbc")
.option("url", "jdbc:mysql://192.168.23.100:3306/spark_sql")
.option("driver", "com.mysql.jdbc.Driver")
.option("user","root")
.option("password","123456")
.option("dbtable","user")
.load().show()
//方式二 : 通用的load方法读取 参数另一种形式
ss.read.format("jdbc")
.options(Map("url"->"jdbc:mysql://192.168.23.100:3306/spark_sql?user=root&password=123456",
"dbtable"->"user","driver"->"com.mysql.jdbc.Driver"))
.load().show()
//方式三 : 使用jdbc方法读取
val prop = new Properties()
prop.setProperty("user","root")
prop.setProperty("password", "123456")
val df: DataFrame = ss.read.jdbc("jdbc:mysql://192.168.23.100:3306/spark_sql","user",prop)
df.show()
ss.stop()
}
- 写入数据
case class User2(name: String, age: Long)
def main(args: Array[String]): Unit = {
val conf: SparkConf = new SparkConf().setMaster("local[*]").setAppName("JDBC")
val ss: SparkSession = SparkSession.builder().config(conf).getOrCreate()
import ss.implicits._
val rdd: RDD[User2] = ss.sparkContext.makeRDD(List(User2("王", 25), User2("赵", 26)))
val ds: Dataset[User2] = rdd.toDS
//方式一 : 通用的load方法读取
ds.write.format("jdbc")
.option("url", "jdbc:mysql://192.168.23.100:3306/spark_sql")
.option("driver", "com.mysql.jdbc.Driver")
.option("user", "root")
.option("charset", "utf8")
.option("password", "123456")
.option("dbtable", "user")
.mode(SaveMode.Append).save()
//方式二 : 通过jdbc方法
// val props: Properties = new Properties()
// props.setProperty("user", "root")
// props.setProperty("password", "123456")
// ds.write.mode(SaveMode.Append).jdbc("jdbc:mysql://192.168.23.100:3306/spark_sql", "user", props)
ss.stop()
}
2.8.6 Hive
Apache Hive 是 Hadoop 上的 SQL 引擎,Spark SQL编译时可以包含 Hive 支持,也可以不包含。包含 Hive 支持的 Spark SQL 可以支持 Hive 表访问、UDF (用户自定义函数)以及 Hive 查询语言(HiveQL/HQL)等。需要强调的一点是,如果要在 Spark SQL 中包含Hive 的库,并不需要事先安装 Hive。一般来说,最好还是在编译Spark SQL时引入Hive支持,这样就可以使用这些特性了。如果你下载的是二进制版本的 Spark,它应该已经在编译时添加了 Hive 支持。
若要把 Spark SQL 连接到一个部署好的 Hive 上,你必须把 hive-site.xml 复制到 Spark的配置文件目录中($SPARK_HOME/conf)。即使没有部署好 Hive,Spark SQL 也可以运行。 需要注意的是,如果你没有部署好Hive,Spark SQL 会在当前的工作目录中创建出自己的 Hive 元数据仓库,叫作 metastore_db。此外,如果你尝试使用 HiveQL 中的 CREATE TABLE (并非 CREATE EXTERNAL TABLE)语句来创建表,这些表会被放在你默认的文件系统中的 /user/hive/warehouse 目录中(如果你的 classpath 中有配好的 hdfs-site.xml,默认的文件系统就是 HDFS,否则就是本地文件系统)。
spark-shell默认是Hive支持的;代码中是默认不支持的,需要手动指定(加一个参数即可)。
- 内嵌的HIVE 如果使用Spark 内嵌的HIve 什么都不要做,直接使用即可。Hive元素局保存在derby中, 默认仓库地址:$SPARK_HOME/spark-warehouse
(在实际使用中, 几乎没有任何人会使用内置的 Hive) - 外部的HIVE
如果在shell想连接外部已经部署好的Hive,需要通过以下几个步骤:
1 . Spark要接管Hive需要把hive-site.xml拷贝到conf/目录下 - 把Mysql的驱动copy到jars/目录下
- 如果访问不到hdfs,则需要把core-site.xml和hdfs-site.xml拷贝到conf/目录下
- 重启spark-shell
如果使用Idea操作Hive:
- 导入依赖
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-hive_2.12</artifactId>
<version>3.0.0</version>
</dependency>
<dependency>
<groupId>org.apache.hive</groupId>
<artifactId>hive-exec</artifactId>
<version>1.2.1</version>
</dependency>
<dependency>
<groupId>mysql</groupId>
<artifactId>mysql-connector-java</artifactId>
<version>5.1.27</version>
</dependency>
- 将hive-site.xml文件拷贝到项目的resources目录中,代码实现
case class User2(name: String, age: Long)
def main(args: Array[String]): Unit = {
val ss: SparkSession = SparkSession.builder().master("local[*]").appName("Hive").enableHiveSupport().getOrCreate()
import ss.implicits._
ss.sql("show databases ").show()
ss.stop()
}