fw菜菜
感谢关注,希望可以一起交流,学习
展开
-
深度学习算法——Transformer
模型完全基于注意力机制,没有任何卷积层或循环神经网络层。尽管最初是应用于在文本数据上的序列到序列学习,但现在已经推广到各种现代的深度学习中,例如语言、视觉、语音和强化学习领域。作为编码器-解码器架构的一个实例,其整体架构图在下图中展示。正如所见到的,是由编码器和解码器组成的。与基于Bahdanau注意力实现的序列到序列的学习相比,原创 2024-08-27 14:08:38 · 96 阅读 · 0 评论 -
数学建模——评价决策类算法Python版(灰色关联分析、主成分分析)
这段代码首先进行了数据的无量纲化处理,然后计算了每个城市与参考序列的灰色关联系数,接着计算了灰色关联度,并最后根据关联度对城市进行了排序,找出了最佳的开店城市。公司收集了以下数据,包括候选城市的GDP、人口、交通便利程度、商业发展水平等指标。公司希望使用灰色关联分析法来评估这些指标与零售店成功可能性之间的关系,以确定最佳的开店城市。根据灰色关联度对候选城市进行排序,关联度最高的城市即为最佳开店城市。计算每个城市的灰色关联度,即各指标关联系数的加权平均值。计算每个城市指标与参考序列的关联系数。原创 2024-08-13 18:57:52 · 760 阅读 · 0 评论 -
数学建模——评价决策类算法(层次分析法、Topsis)
确定各准则对于目标的权重, 及各方案对于每一准则的权重,这些权重在人的思维过程中通常是定性的, 而在层次分析法中则要给出得到权重的定量方法. 将方案层对准则层的权重及准则层对目标层的权重进行综合, 最终确定方案层对目标层的权重。数组是一个预定义的随机一致性指标,它依赖于矩阵的大小(即准则的数量)。目标层:选择最佳投资地点 准则层:经济发展水平、人力资源、基础设施、政策支持 方案层:城市A、城市B、城市C。根据步骤3的计算结果,得到各评价指标和方案的权重,进而计算出各方案的综合得分,选择得分最高的方案。原创 2024-08-13 17:42:25 · 1067 阅读 · 0 评论 -
数学建模——评价决策类算法(熵权法、模糊综合评价)
如高与矮, 长与短,大与小,多与少,穷与富,好与差, 年轻与年老等。例题:某公司计划推出一款新产品,为了评估该产品的市场潜力,公司希望通过模糊综合评价算法对产品进行评价。运行上述代码,将输出新产品的综合评价结果,这个结果反映了新产品在各个评价等级上的综合表现。纯粹性:所谓集合的纯粹性,用个例子来表示,集合A={x|x原创 2024-08-13 18:04:32 · 1111 阅读 · 1 评论 -
数学建模——启发式算法(蚁群算法)
蚁群算法来自于蚂蚁寻找食物过程中发现路径的行为。蚂蚁并没有视觉却可以寻找到食物,这得益于蚂蚁分泌的信息素,蚂蚁之间相互独立,彼此之间通过信息素进行交流, 从而实现群体行为。 蚁群算法的基本原理就是蚂蚁觅食的过程。首先,蚂蚁在觅食的过程中会在路径上留下信息素(pheromone),并在寻找食物的过程中感知这种物质的强度,并指导自己的行为方向,他们总会朝着浓度高的方向前进。因此可以看得出来,蚂蚁觅食的过程是一个正反馈的过程,该路段经过的蚂蚁越多,信息素留下的就越多,浓度越高,更多的蚂蚁都会选择这个原创 2024-08-13 16:46:24 · 1205 阅读 · 0 评论 -
元胞自动机模型原理及应用
元胞自动机(Cellular Automata,CA)是一种时空离散的局部动力学模型,是研究复杂系统的一种典型方法,特别适合用于空间复杂系统的时空动态模拟研究。元胞自动机不是由严格定义的物理方程或函数确定,而是用一系列模型构造的规则构成。凡是满足这些规则的模型都可以算作是元胞自动机模型。因此,元胞自动机是一类模型的总称,或者说是一个方法框架。元胞自动机最基本的组成:元胞、元胞空间、邻居及规则四部分。简单讲,元胞自动机可以视为由一个元胞空间和定义于该空间的变换函数所组成。原创 2024-08-01 18:23:04 · 1334 阅读 · 0 评论 -
数学建模——变量类型及相关性分析
在通常的显著性水平(例如0.05)下,这个p值大于0.05,因此我们不能拒绝零假设,即我们不能断定X和Y之间的相关性在统计上是显著的。在多变量的情况下,变量之间的相关关系是很复杂的。在计算偏相关系数时:需要掌握多个变量的数据,一方面考虑多个变量相互之间可能产生的影响,一方面又采用一定的方 法控制其他变量,专门考察两个特定变量的净相关关系。由于我们的t统计量2.121小于3.182,因此我们不能在0.05的显著性水平下拒绝零假设,即我们不能断定X和Y之间的相关性是显著的。是运用最广的一种相关程度统计量。原创 2024-08-01 17:53:02 · 1232 阅读 · 0 评论 -
数学建模运筹优化——规划问题Python版(动态规划、图论)
动态规划是运筹学的一个分支,通常用来解决多阶段决策过程最优化问题。动态规划的基本想法就是将原问题转换为一系列相互联系的子问题,然后通过逐层地推来求得最后的解。原创 2024-07-30 11:07:01 · 1123 阅读 · 0 评论 -
数学建模运筹优化——规划问题Python版(最大、最小化规划,多目标规划)
在实际问题中也有许多求最大值的最小化问题, 例如急救中心选址问题就是要规划其到所有地点最大距离的最小值,在投资规划中要确定最大风险的最 低限度等,为此,我们先求出目标值 的最大值,然后再求这些最大值中的最小值。他从政治经济学的角度考虑把本质上是不可比较的许多目标化成单个目标的最优化问题,从而涉及了多目标规划问题和多目标的概念。通常指的是那些不一定在所有目标上都达到最优,但是根据决策者的偏好和评价标准,可以接受的一组解。是帕累托最优解的另一种说法,它指的是那些不能被其他任何解在所有目标函数上同时改进的解。原创 2024-07-24 21:08:12 · 938 阅读 · 0 评论 -
数学建模运筹优化——规划问题Python版(线性、非线性、整数、0/1)
蒙特卡罗法又称统计模拟法,是一种随机模拟方法,以概率和统计理论方法为基础的一种计 算方法,是使用随机数(或更常见伪随机数)来解决很多计算问题的方法。将所求解的问题同一定的概 率模型相联系,用电子计算机实现统计模拟或抽样,以获得问题的近似解。为象征性地表明这一方法的 概率统计特征,故借用都城蒙特卡罗命名。原创 2024-07-23 23:16:36 · 2321 阅读 · 0 评论