深度学习算法——Transformer

参考教材:动手学pytorch

一、模型介绍

        Transformer模型完全基于注意力机制,没有任何卷积层或循环神经网络层。尽管Transformer最初是应用于在文本数据上的序列到序列学习,但现在已经推广到各种现代的深度学习中,例如语言、视觉、语音和强化学习领域。

Transformer作为编码器-解码器架构的一个实例,其整体架构图在下图中展示。正如所见到的,Trans‐ former是由编码器和解码器组成的。与基于Bahdanau注意力实现的序列到序列的学习相比,Trans‐ former的编码器和解码器是基于自注意力的模块叠加而成的,源(输入)序列和目标(输出)序列的嵌入 (embedding)表示将加上位置编码(positional encoding),再分别输入到编码器和解码器中。

        图中概述了Transformer的架构。从宏观角度来看,Transformer的编码器是由多个相同的层叠加而 成的,每个层都有两个子层(子层表示为sublayer)。第一个子层是多头自注意力(multi‐head self‐attention) 汇聚;第二个子层是基于位置的前馈网络(positionwise feed‐forward network)。具体来说,在计算编码器的自注意力时,查询、键和值都来自前一个编码器层的输出。受残差网络的启发,每个子层都采用了残差连接(residual connection)。在Transformer中,对于序列中任何位置的任何输入x ∈ R d,都要求满 足sublayer(x) ∈ Rd,以便残差连接满足x + sublayer(x) ∈ R d。在残差连接的加法计算之后,紧接着应用层规范化(layer normalization)(Ba et al., 2016)。因此,输入序列对应的每个位置,Transformer编码器都将输出一个d维表示向量。         Transformer解码器也是由多个相同的层叠加而成的,并且层中使用了残差连接和层规范化。除了编码器中描述的两个子层之外,解码器还在这两个子层之间插入了第三个子层,称为编码器-解码器注意力(encoder‐ decoder attention)。在编码器-解码器注意力中,查询来自前一个解码器层的输出,而键和值来自整个编码器的输出。在解码器自注意力中,查询、键和值都来自上一个解码器层的输出。但是,解码器中的每个位 置只能考虑该位置之前的所有位置。这种掩蔽(masked)注意力保留了自回归(auto‐regressive)属性,确保预测仅依赖于已生成的输出词元。 

 二、模型的简单实现

1、导包

import math
import pandas as pd
import torch
from torch import nn
from d2l import torch as d2l

2、基于位置的前馈网络

基于位置的前馈网络对序列中的所有位置的表示进行变换时使用的是同一个多层感知机(MLP),这就是称前馈网络是基于位置的(positionwise)的原因。在下面的实现中,输入X的形状(批量大小,时间步数或序列长度,隐单元数或特征维度)将被一个两层的感知机转换成形状为(批量大小,时间步数,ffn_num_outputs) 的输出张量。

#@save
class PositionWiseFFN(nn.Module):
    """基于位置的前馈网络"""
    def __init__(self, ffn_num_input, ffn_num_hiddens, ffn_num_outputs,
    **kwargs):
        super(PositionWiseFFN, self).__init__(**kwargs)
        self.dense1 = nn.Linear(ffn_num_input, ffn_num_hiddens)
        self.relu = nn.ReLU()
        self.dense2 = nn.Linear(ffn_num_hiddens, ffn_num_outputs)
    def forward(self, X):
        return self.dense2(self.relu(self.dense1(X)))

下面的例子显示,改变张量的最里层维度的尺寸,会改变成基于位置的前馈网络的输出尺寸。因为用同一个 多层感知机对所有位置上的输入进行变换,所以当所有这些位置的输入相同时,它们的输出也是相同的。

ffn = PositionWiseFFN(4, 4, 8)
ffn.eval()
print(ffn(torch.ones((2, 3, 4)))[0])

3、残差连接和层规范化

Transformer结构图中的加法和规范化(add&norm)组件这是由残差连接和紧随其后的层规范化组成的。两者都是构建有效的深度架构的关键。 在一个小批量的样本内基于批量规范化对数据进行重新中心化重新缩放的调整。层规范化和批量规范化的目标相同,但层规范化是基于特征维度进行规范化。尽管批量规范化在计算机视觉中被广泛应用,但在自然语言处理任务中(输入通常是变长序列)批量规范化通常不如层规范化的效果好。 以下代码对比不同维度的层规范化和批量规范化的效果。  

#对比不同维度的层规范化和批量规范化的效果
ln = nn.LayerNorm(2)
bn = nn.BatchNorm1d(2)
X = torch.tensor([[1, 2], [2, 3]], dtype=torch.float32)
# 在训练模式下计算X的均值和方差
print('layer norm:', ln(X), '\nbatch norm:', bn(X))

 现在可以使用残差连接和层规范化来实现AddNorm类。暂退法也被作为正则化方法使用。

#@save
class AddNorm(nn.Module):
    """残差连接后进行层规范化"""
    def __init__(self, normalized_shape, dropout, **kwargs):
        super(AddNorm, self).__init__(**kwargs)
        self.dropout = nn.Dropout(dropout)
        self.ln = nn.LayerNorm(normalized_shape)
    def forward(self, X, Y):
        return self.ln(self.dropout(Y) + X)

残差连接要求两个输入的形状相同,以便加法操作后输出张量的形状相同。

add_norm = AddNorm([3, 4], 0.5)
add_norm.eval()
print(add_norm(torch.ones((2, 3, 4)), torch.ones((2, 3, 4))).shape)

4、编码器

有了组成Transformer编码器的基础组件,现在可以先实现编码器中的一个层。下面的EncoderBlock类包含两个子层:多头自注意力基于位置的前馈网络,这两个子层都使用了残差连接和紧随的层规范化。
原文代码如下:

#编码器
#@save
class EncoderBlock(nn.Module):
    """Transformer编码器块"""
    def __init__(self, key_size, query_size, value_size, num_hiddens,
    norm_shape, ffn_num_input, ffn_num_hiddens, num_heads,
    dropout, use_bias=False, **kwargs):
        super(EncoderBlock, self).__init__(**kwargs)
        self.attention = d2l.MultiHeadAttention(
        key_size, query_size, value_size, num_hiddens, num_heads, dropout,
        use_bias)
        self.addnorm1 = AddNorm(norm_shape, dropout)
        self.ffn = PositionWiseFFN(
        ffn_num_input, ffn_num_hiddens, num_hiddens)
        self.addnorm2 = AddNorm(norm_shape, dropout)
    def forward(self, X, valid_lens):
        Y = self.addnorm1(X, self.attention(X, X, X, valid_lens))
        return self.addnorm2(Y, self.ffn(Y))

但是在运行的时候报错:TypeError: __init__() takes from 4 to 5 positional arguments but 8 were given这意味着调用的 MultiHeadAttention 类的构造函数仅接受4到5个位置参数,但您实际传递了8个参数。 

所以对代码进行修改确保能正确运行,如下修改后的代码是删除了key_size, query_size, value_size这三个参数。

#编码器
#@save
class EncoderBlock(nn.Module):
    """Transformer编码器块"""
    def __init__(self, num_hiddens,
    norm_shape, ffn_num_input, ffn_num_hiddens, num_heads,
    dropout, use_bias=False, **kwargs):
        super(EncoderBlock, self).__init__(**kwargs)
        self.attention = d2l.MultiHeadAttention(
      num_hiddens, num_heads, dropout,use_bias)
        self.addnorm1 = AddNorm(norm_shape, dropout)
        self.ffn = PositionWiseFFN(
        ffn_num_input, ffn_num_hiddens, num_hiddens)
        self.addnorm2 = AddNorm(norm_shape, dropout)
    def forward(self, X, valid_lens):
        Y = self.addnorm1(X, self.attention(X, X, X, valid_lens))
        return self.addnorm2(Y, self.ffn(Y))

正如从代码中所看到的,Transformer编码器中的任何层都不会改变其输入的形状。

X = torch.ones((2, 100, 24))
valid_lens = torch.tensor([3, 2])
#encoder_blk = EncoderBlock(24, 24, 24, 24, [100, 24], 24, 48, 8, 0.5)
#原文代码,需要将前三个传入的参数删掉,对应着上面那段代码的修改
encoder_blk = EncoderBlock(24, [100, 24], 24, 48, 8, 0.5)
encoder_blk.eval()
print(encoder_blk(X, valid_lens).shape)

 

下面实现的Transformer编码器的代码中,堆叠了num_layers个EncoderBlock类的实例。由于这里使用的是值范围在−1和1之间的固定位置编码,因此通过学习得到的输入的嵌入表示的值需要先乘以嵌入维度的平方根进行重新缩放,然后再与位置编码相加。

同样的我们需要修改原文代码,避免报错(即删掉如上提到的key_size, query_size, value_size这三个参数)

#@save
class TransformerEncoder(d2l.Encoder):
    """Transformer编码器"""
    def __init__(self, vocab_size,
    num_hiddens, norm_shape, ffn_num_input, ffn_num_hiddens,
    num_heads, num_layers, dropout, use_bias=False, **kwargs):
        super(TransformerEncoder, self).__init__(**kwargs)
        self.num_hiddens = num_hiddens
        self.embedding = nn.Embedding(vocab_size, num_hiddens)
        self.pos_encoding = d2l.PositionalEncoding(num_hiddens, dropout)
        self.blks = nn.Sequential()
        for i in range(num_layers):
            self.blks.add_module("block"+str(i),
            EncoderBlock( num_hiddens,
            norm_shape, ffn_num_input, ffn_num_hiddens,
            num_heads, dropout, use_bias))
    def forward(self, X, valid_lens, *args):
        # 因为位置编码值在-1和1之间,
        # 因此嵌入值乘以嵌入维度的平方根进行缩放,
        # 然后再与位置编码相加。
        X = self.pos_encoding(self.embedding(X) * math.sqrt(self.num_hiddens))
        self.attention_weights = [None] * len(self.blks)
        for i, blk in enumerate(self.blks):
            X = blk(X, valid_lens)
            self.attention_weights[
            i] = blk.attention.attention.attention_weights
        return X

下面我们指定了超参数来创建一个两层的Transformer编码器。Transformer编码器输出的形状是(批量大小,时间步数目,num_hiddens)

encoder = TransformerEncoder(
200, 24, [100, 24], 24, 48, 8, 2, 0.5)
encoder.eval()
print(encoder(torch.ones((2, 100), dtype=torch.long), valid_lens).shape)

5、解码器

如结构图所示,Transformer解码器也是由多个相同的层组成。在DecoderBlock类中实现的每个层包含了三个子层:解码器自注意力“编码器‐解码器”注意力基于位置的前馈网络。这些子层也都被残差连接和紧随的层规范化围绕。 正如在本节前面所述,在掩蔽多头解码器自注意力层(第一个子层)中,查询、键和值都来自上一个解码器层的输出。关于序列到序列模型(sequence‐to‐sequence model),在训练阶段,其输出序列的所有位置(时间步)的词元都是已知的;然而,在预测阶段,其输出序列的词元是逐个生成的。因此,在任何解码器时间步中,只有生成的词元才能用于解码器的自注意力计算中。为了在解码器中保留自回归的属性,其掩蔽自注意力设定了参数dec_valid_lens,以便任何查询都只会与解码器中所有已经生成词元的位置(即直到该查询位置为止)进行注意力计算。

#解码器
class DecoderBlock(nn.Module):
    """解码器中第i个块"""
    def __init__(self, num_hiddens,
    norm_shape, ffn_num_input, ffn_num_hiddens, num_heads,
    dropout, i, **kwargs):
        super(DecoderBlock, self).__init__(**kwargs)
        self.i = i
        self.attention1 = d2l.MultiHeadAttention(
        num_hiddens, num_heads, dropout)
        self.addnorm1 = AddNorm(norm_shape, dropout)
        self.attention2 = d2l.MultiHeadAttention(
         num_hiddens, num_heads, dropout)
        self.addnorm2 = AddNorm(norm_shape, dropout)
        self.ffn = PositionWiseFFN(ffn_num_input, ffn_num_hiddens,
        num_hiddens)
        self.addnorm3 = AddNorm(norm_shape, dropout)
    def forward(self, X, state):
        enc_outputs, enc_valid_lens = state[0], state[1]
        # 训练阶段,输出序列的所有词元都在同一时间处理,
        # 因此state[2][self.i]初始化为None。
        # 预测阶段,输出序列是通过词元一个接着一个解码的,
        # 因此state[2][self.i]包含着直到当前时间步第i个块解码的输出表示
        if state[2][self.i] is None:
            key_values = X
        else:
            key_values = torch.cat((state[2][self.i], X), axis=1)

        state[2][self.i] = key_values
        if self.training:
            batch_size, num_steps, _ = X.shape
            # dec_valid_lens的开头:(batch_size,num_steps),
            # 其中每一行是[1,2,...,num_steps]
            dec_valid_lens = torch.arange(
                1, num_steps + 1, device=X.device).repeat(batch_size, 1)
        else:
            dec_valid_lens = None
        # 自注意力
        X2 = self.attention1(X, key_values, key_values, dec_valid_lens)
        Y = self.addnorm1(X, X2)
        # 编码器-解码器注意力。
        # enc_outputs的开头:(batch_size,num_steps,num_hiddens)
        Y2 = self.attention2(Y, enc_outputs, enc_outputs, enc_valid_lens)
        Z = self.addnorm2(Y, Y2)
        return self.addnorm3(Z, self.ffn(Z)), state

为了便于在“编码器-解码器”注意力中进行缩放点积计算和残差连接中进行加法计算,编码器和解码器的特征维度都是num_hiddens。  

decoder_blk = DecoderBlock( 24, [100, 24], 24, 48, 8, 0.5, 0)
decoder_blk.eval()
X = torch.ones((2, 100, 24))
state = [encoder_blk(X, valid_lens), valid_lens, [None]]
print(decoder_blk(X, state)[0].shape)

现在我们构建了由num_layers个DecoderBlock实例组成的完整的Transformer解码器。最后,通过一个全连接层计算所有vocab_size个可能的输出词元的预测值。解码器的自注意力权重和编码器解码器注意力权重都被存储下来,方便日后可视化的需要。 

class TransformerDecoder(d2l.AttentionDecoder):
    def __init__(self, vocab_size, key_size, query_size, value_size,
        num_hiddens, norm_shape, ffn_num_input, ffn_num_hiddens,
        num_heads, num_layers, dropout, **kwargs):
        super(TransformerDecoder, self).__init__(**kwargs)
        self.num_hiddens = num_hiddens
        self.num_layers = num_layers
        self.embedding = nn.Embedding(vocab_size, num_hiddens)
        self.pos_encoding = d2l.PositionalEncoding(num_hiddens, dropout)
        self.blks = nn.Sequential()
        for i in range(num_layers):
            self.blks.add_module("block"+str(i),
                DecoderBlock(key_size, query_size, value_size, num_hiddens,
                    norm_shape, ffn_num_input, ffn_num_hiddens,
                    num_heads, dropout, i))
        self.dense = nn.Linear(num_hiddens, vocab_size)
    def init_state(self, enc_outputs, enc_valid_lens, *args):
        return [enc_outputs, enc_valid_lens, [None] * self.num_layers]
    def forward(self, X, state):
        X = self.pos_encoding(self.embedding(X) * math.sqrt(self.num_hiddens))
        self._attention_weights = [[None] * len(self.blks) for _ in range (2)]
        for i, blk in enumerate(self.blks):
            X, state = blk(X, state)
            # 解码器自注意力权重
            self._attention_weights[0][
            i] = blk.attention1.attention.attention_weights
            # “编码器-解码器”自注意力权重
            self._attention_weights[1][
            i] = blk.attention2.attention.attention_weights
        return self.dense(X), state
    @property
    def attention_weights(self):
        return self._attention_weights

6、训练 

依照Transformer架构来实例化编码器-解码器模型。在这里,指定Transformer的编码器和解码器都是2层, 都使用4头注意力。为了进行序列到序列的学习,下面在“英语-法语”机器翻译数据集上 训练Transformer模型。  

# 修改后的 EncoderDecoder 类
class EncoderDecoder(nn.Module):
    """编码器-解码器架构"""
    def __init__(self, encoder, decoder, **kwargs):
        super(EncoderDecoder, self).__init__(**kwargs)
        self.encoder = encoder
        self.decoder = decoder
    def forward(self, enc_X, dec_X, *args):
        # enc_X: 编码器输入, dec_X: 解码器输入
        enc_outputs = self.encoder(enc_X, *args)
        dec_state = self.decoder.init_state(enc_outputs, *args)
        return self.decoder(dec_X, dec_state)
# 训练
num_hiddens, num_layers, dropout, batch_size, num_steps = 32, 2, 0.1, 64, 10
lr, num_epochs, device = 0.005, 200, d2l.try_gpu()
ffn_num_input, ffn_num_hiddens, num_heads = 32, 64, 4
norm_shape = [32]

train_iter, src_vocab, tgt_vocab = d2l.load_data_nmt(batch_size, num_steps)

encoder = TransformerEncoder(
    len(src_vocab), num_hiddens,
    norm_shape, ffn_num_input, ffn_num_hiddens, num_heads,
    num_layers, dropout)
decoder = TransformerDecoder(
    len(tgt_vocab), num_hiddens,
    norm_shape, ffn_num_input, ffn_num_hiddens, num_heads,
    num_layers, dropout)
net = EncoderDecoder(encoder, decoder)
d2l.train_seq2seq(net, train_iter, lr, num_epochs, tgt_vocab, device)

 在训练前定义了一个EncoderDecoder类,提供了一个简单的接口,用于处理编码器和解码器的交互。它隐藏了编码器和解码器之间交互的复杂性,使得在训练和推理时更容易使用它们。防止“too many values to unpack (expected 2)” 错误的发生。

 训练结束后,使用Transformer模型将一些英语句子翻译成法语,并且计算它们的BLEU分数。

engs = ['go .', "i lost .", 'he\'s calm .', 'i\'m home .']
fras = ['va !', 'j\'ai perdu .', 'il est calme .', 'je suis chez moi .']
for eng, fra in zip(engs, fras):
    translation, dec_attention_weight_seq = d2l.predict_seq2seq(
    net, eng, src_vocab, tgt_vocab, num_steps, device, True)
    print(f'{eng} => {translation}, ',
    f'bleu {d2l.bleu(translation, fra, k=2):.3f}')

 

 当进行最后一个英语到法语的句子翻译工作时,让我们可视化Transformer的注意力权重。编码器自注意力权重的形状为(编码器层数,注意力头数,num_steps或查询的数目,num_steps或“键-值”对的数目)。

enc_attention_weights = torch.cat(net.encoder.attention_weights, 0).reshape((num_layers, num_heads,
-1, num_steps))
print(enc_attention_weights.shape)

 

在编码器的自注意力中,查询和键都来自相同的输入序列。因为填充词元是不携带信息的,因此通过指定输入序列的有效长度可以避免查询与使用填充词元的位置计算注意力。接下来,将逐行呈现两层多头注意力的 权重。每个注意力头都根据查询、键和值的不同的表示子空间来表示不同的注意力。  

为了可视化解码器的自注意力权重和“编码器-解码器”的注意力权重,我们需要完成更多的数据操作工作。 例如用零填充被掩蔽住的注意力权重。值得注意的是,解码器的自注意力权重和“编码器-解码器”的注意 力权重都有相同的查询:即以序列开始词元(beginning‐of‐sequence,BOS)打头,再与后续输出的词元共同组成序列。 

dec_attention_weights_2d = [head[0].tolist()
                            for step in dec_attention_weight_seq
                            for attn in step for blk in attn for head in blk]
dec_attention_weights_filled = torch.tensor(
    pd.DataFrame(dec_attention_weights_2d).fillna(0.0).values)
dec_attention_weights = dec_attention_weights_filled.reshape((-1, 2, num_layers, num_heads, num_steps))
dec_self_attention_weights, dec_inter_attention_weights = \
    dec_attention_weights.permute(1, 2, 3, 0, 4)
print(dec_self_attention_weights.shape, dec_inter_attention_weights.shape)

 

由于解码器自注意力的自回归属性,查询不会对当前位置之后的“键-值”对进行注意力计算。 

 

与编码器的自注意力的情况类似,通过指定输入序列的有效长度,输出序列的查询不会与输入序列中填充位置的词元进行注意力计算。  

三、 transformer数学建模的应用

在数学建模中,Transformer模型可以应用于多种问题,主要因为它强大的序列建模能力和在处理序列数据方面的优势。以下是一些Transformer模型可能适用的问题领域:

  1. 时间序列分析

    • 预测股市走势
    • 天气预报
    • 能源消耗预测
    • 经济指标预测
  2. 优化问题

    • 资源分配优化
    • 生产排程
    • 旅行商问题(TSP)
    • 车辆路径问题(VRP)
  3. 图像处理

    • 利用Transformer的变种,如ViT(Vision Transformer),进行图像分类、目标检测等任务。
    • 图像分割
    • 图像生成
  4. 自然语言处理(NLP)相关

    • 文本分类问题,如情感分析
    • 文本生成,如自动写作
    • 机器翻译
    • 文档摘要
  5. 推荐系统

    • 用户行为预测
    • 商品推荐
  6. 复杂系统的模拟与控制

    • 交通流量预测
    • 生态系统模拟
    • 疾病传播模型
  7. 生物信息学

    • 蛋白质结构预测
    • 基因表达分析

在应用Transformer模型时,应注意以下几点:

  • 数据准备:Transformer模型通常需要大量的数据来训练,因此在数学建模中应用时,需要有充足的高质量数据。
  • 计算资源:Transformer模型训练通常需要较高的计算资源,尤其是在没有经过专门优化的情况下。
  • 模型调整:根据具体问题,可能需要对Transformer模型的结构进行适当的调整,以适应特定的问题背景和数据特性。

 Transformer模型由于其自注意力机制(Self-Attention)和能够处理长距离依赖的能力,特别适合以下类型的问题:

  1. 序列到序列的任务

    • 机器翻译:将一种语言的序列转换为另一种语言的序列。
    • 文本摘要:将长文本序列转换为简洁的摘要序列。
    • 语音识别:将语音信号序列转换为文字序列。
  2. 自然语言处理(NLP)

    • 文本分类:如情感分析、新闻分类等,判断文本序列的类别。
    • 问答系统:理解问题序列并从文本中找出答案序列。
    • 命名实体识别(NER):在文本序列中识别特定的实体。
  3. 时间序列分析

    • 股票价格预测:分析历史价格序列来预测未来的价格走势。
    • 天气预报:根据历史天气数据序列预测未来的天气情况。
    • 能源消耗预测:根据时间序列数据预测能源的使用情况。
  4. 推荐系统

    • 用户行为预测:分析用户的历史行为序列来预测未来的行为或偏好。
  5. 图像处理

    • 图像分类:使用Vision Transformer(ViT)等模型,将图像视为序列进行处理。
    • 目标检测:在图像中检测并定位不同的物体。

以下问题特别适合Transformer模型的特点:

  • 长序列依赖:Transformer模型能够有效地捕捉长序列中的依赖关系,因此对于需要理解长距离上下文的问题特别有效。
  • 并行化处理:由于Transformer的自注意力机制,它可以同时处理序列中的所有元素,这使得它在训练时可以更高效地利用现代硬件的并行处理能力。
  • 多模态学习:Transformer模型可以处理不同模态的数据(如文本和图像),适合于多模态任务,如图文匹配、视频分类等。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值