第一章、集合
基本概念:
基数:集合A中的元素个数,记为|A|,|A|是有限的就是有限集,否则是无限集
表示方法:
列举法(显式法):列出集合中全部元素或部分元素且能看出其它元素规律
A={0,1,2,3}; (2)B = {0, 1, 4, …, n2, …}
描述法(隐式法):刻画集合中元素所具备的某种特性来表示集合的方法
M={x|1≤x≤12,x被2整除,x∈Z}
归纳法、递归指定、文氏图
特性:互异性{1,1,2}={1,2},确定性,无序性{2,1}={1,2}
集合的关系:
相等集合:元素完全相同的两个集合,记为A=B
包含:B中的每个元素都是A中的元素,则称B是A的子集合
空集= {x|x≠x}
幂集:含有n个元素的集合为n元集
P({a,{b, c}})={空集, {a},{{b, c}}, {a, {b, c}}} |P(A)|= 2^n
集合的运算:
(1)并集 A∪B={x|x∈A或x∈B}
(2)交集 A∩B={x|x∈A且x∈B}
(3)差集 A-B={x|x∈A且x∉B}
(4)补集 Bc=U-B={x|x∈U且x ∉B} (记作B′,~B, B ̅ )
(5)对称差集 AÅB={x|(x∈A)且(x∉B)或(x ∈B)且(x ∉A)}
幂 等 律:A∪A=A; A∩A=A;
交 换 律:A∪B=B∪A; A∩B=B∩A
结 合 律:A∪(B∪C)=(A∪B)∪C; A∩(B∩C)=(A∩B)∩C;
分 配 律:A∩(B∪C)=(A∩B)∪(A∩C); A∪(B∩C)=(A∪B)∩(A∪C);
同 一 律:A∪Φ=A; A∩U=A;
零 律:A∪U=U; A∩Φ=Φ;
吸 收 律: A∩(A∪B)=A; A∪(A∩B)=A;
双重否定律:((Ac)c )=A ;
德· 摩根律:(A∪B)c =Ac ∩Bc ;(A ∩ B)c =(Ac )∪ (Bc) ;
矛 盾 律:(Ac)∩A=Φ;
排 中 律:(Ac )∪A =U
第一章、集合
最新推荐文章于 2024-11-16 18:21:00 发布