第一章、集合

第一章、集合
    基本概念:
        基数:集合A中的元素个数,记为|A|,|A|是有限的就是有限集,否则是无限集
        表示方法:
             列举法(显式法):列出集合中全部元素或部分元素且能看出其它元素规律
                A={0,1,2,3};  (2)B = {0, 1, 4, …, n2, …}

         描述法(隐式法):刻画集合中元素所具备的某种特性来表示集合的方法
            M={x|1≤x≤12,x被2整除,x∈Z}

        归纳法、递归指定、文氏图

    特性:互异性{1,1,2}={1,2},确定性,无序性{2,1}={1,2}
    集合的关系:
        相等集合:元素完全相同的两个集合,记为A=B
        包含:B中的每个元素都是A中的元素,则称B是A的子集合
        空集= {x|x≠x}
        幂集:含有n个元素的集合为n元集
            P({a,{b, c}})={空集, {a},{{b, c}}, {a, {b, c}}}   |P(A)|= 2^n



集合的运算:
    (1)并集  A∪B={x|x∈A或x∈B}
    (2)交集  A∩B={x|x∈A且x∈B}
    (3)差集  A-B={x|x∈A且x∉B}
    (4)补集  Bc=U-B={x|x∈U且x ∉B}  (记作B′,~B,  B ̅    )
    (5)对称差集  AÅB={x|(x∈A)且(x∉B)或(x ∈B)且(x ∉A)}
    幂    等   律:A∪A=A;                                  A∩A=A; 
    交    换   律:A∪B=B∪A;                             A∩B=B∩A
    结    合   律:A∪(B∪C)=(A∪B)∪C;      A∩(B∩C)=(A∩B)∩C;
    分    配   律:A∩(B∪C)=(A∩B)∪(A∩C); A∪(B∩C)=(A∪B)∩(A∪C);
    同    一   律:A∪Φ=A;  A∩U=A;    
    零        律:A∪U=U;  A∩Φ=Φ;
    吸    收   律:  A∩(A∪B)=A;  A∪(A∩B)=A; 
    双重否定律:((Ac)c )=A ;
    德· 摩根律:(A∪B)c =Ac ∩Bc ;(A ∩ B)c =(Ac )∪ (Bc) ;
    矛    盾  律:(Ac)∩A=Φ;
    排    中  律:(Ac )∪A =U
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值