洛谷P1123 取数游戏(C++)(DFS)

该问题是一个典型的图论问题,给定一个N×M的数字矩阵,目标是找出不相邻的数字之和最大。采用深度优先搜索(DFS)策略,通过标记已访问过的单元格来避免选取相邻的数字,从而找到最大和。
摘要由CSDN通过智能技术生成

目录

1.题目

题目描述

输入格式

输出格式

输入输出样例

说明/提示

2.AC


1.题目

题目描述

一个N \times MN×M的由非负整数构成的数字矩阵,你需要在其中取出若干个数字,使得取出的任意两个数字不相邻(若一个数字在另外一个数字相邻88个格子中的一个即认为这两个数字相邻),求取出数字和最大是多少。

输入格式

第1行有一个正整数TT,表示了有TT组数据。

对于每一组数据,第一行有两个正整数NN和MM,表示了数字矩阵为NN行MM列。

接下来NN行,每行MM个非负整数,描述了这个数字矩阵。

输出格式

TT行,每行一个非负整数,输出所求得的答案。

输入输出样例

输入 #1

3
4 4
67 75 63 10
29 29 92 14
21 68 71 56
8 67 91 25
2 3
87 70 85
10 3 17
3 3
1 1 1
1 99 1
1 1 1

输出 #1

271
172
99

说明/提示

对于第1组数据,取数方式如下:

[67] 75 63 10

29 29 [92] 14

[21] 68 71 56

8 67 [91] 25

对于20\%20%的数据,N, M≤3N,M≤3;

对于40\%40%的数据,N,M≤4N,M≤4;

对于60\%60%的数据,N, M≤5N,M≤5;

对于100\%100%的数据,N, M≤6,T≤20N,M≤6,T≤20。

2.AC

#include <iostream>
#include <string.h>
using namespace std;

int n, m, ans;
int a[10][10], v[10][10];
int tx[8] = {0,1,1,1,0,-1,-1,-1}, ty[8] = {1,1,0,-1,-1,-1,0,1};

int f1(int cx,int cy) {
	v[cx][cy]++;
	for (int i = 0; i < 8; i++) {
		int x = cx + tx[i];
		int y = cy + ty[i];
		if (x < 0 || y < 0 || x >= n || y >= m) continue;
		v[x][y]++;
	}
}

int f2(int cx,int cy) {
	v[cx][cy]--;
	for (int i = 0; i < 8; i++) {
		int x = cx + tx[i];
		int y = cy + ty[i];
		if (x < 0 || y < 0 || x >= n || y >= m) continue;
		v[x][y]--;
	}
}

int dfs (int cx, int cy, int sum) {
	if (cy == m) {
		cx++;
		cy = 0;
	}
	if (cx == n) {
		ans = max(ans,sum);
		return 0;
	}
	dfs(cx,cy+1,sum);
	if (!v[cx][cy]) {
		f1(cx,cy);
		dfs(cx,cy+1,sum+a[cx][cy]);
		f2(cx,cy);
	}
	return 0;
}

int main()
{
	int T;
	cin>>T;
	while (T--) {
		ans = 0;
		memset(v,0,sizeof(v));
		cin>>n>>m;
		for (int i = 0; i < n; i++) {
			for (int j = 0; j < m; j++) {
				cin>>a[i][j];
			} 
		}
		dfs(0,0,0);
		cout<<ans<<endl;
	}
	return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值