《python数据分析》心得体会

本文分享了阅读《python数据分析》一书的心得体会,主要介绍了numpy、pandas和matplotlib三大库的功能和使用,强调了pandas在数据处理中的重要性。此外,还探讨了python数据分析环境的选择,推荐使用anaconda,并指出书中部分内容已过时,给出了更新的解决方案。实战部分涉及pandas的安装和使用,以及Python基础知识和面向对象编程的概念。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

       首先,本书围绕三个库进行讨论——numpy,pandas和matplotlib。Numpy是个模仿R的库,对python的独特的数组进行向量操作——将数组作为矩阵进行切片,换行,变换,转置,计算等一系列操作。Numpy的强大之处建立在python的天生优势——一切皆对象的基础之上,这也正是numpy的强大——一切皆数组(矩阵)。所以numpy是未来python做SVD,SVM等机械学习的基础——变量矩阵化。

       第二大库——pandas,pandas是基于numpy的一个超级库,这个库不仅完成了numpy的所有基本功能,并且更进一步,矩阵数据框化(DataFrame)。相信熟悉R语言和SAS的朋友对这个概念并不陌生,因为我们几乎所有的数据都是经过数据框进行处理的。数据框的最大特点就是——index(索引)和columns(字段)。也就是pandas所有的操作都是围绕这两个东西进行的。包括增删改,补充,添加等等。也就是利用pandas你能干所有excel可以干的事情,真正意义上的数据管理和数据处理。

       第三大库——matplotlib,python的标志性画图库,然而这个库并没有什么真正意义上的价值,笔者发现,通过python处理过的数据直接经过R作出图像反而更快,更有可视感。另外,真正画图的库使seaborn(因为可变化多)。

       第二,是python做数据分析的环境和编辑器。我知道很多python开发的朋友喜欢用pycharm,但是不好意思,笔者实际操作和阅读,以及真实案例来看,anaconda才是真正意义上的python数据分析和挖掘的操作器

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值