分成互质组

题目

时间限制: 1000 ms         内存限制: 65536 KB
提交数: 4533     通过数: 2089
【题目描述】
给定n个正整数,将它们分组,使得每组中任意两个数互质。至少要分成多少个组?

【输入】
第一行是一个正整数n。1 ≤ n ≤ 10。

第二行是n个不大于10000的正整数。

【输出】
一个正整数,即最少需要的组数。

【输入样例】
6
14 20 33 117 143 175
【输出样例】
3

思路

将每个数依次放入

每次遍历当前有的所有组

挨个判断是否可以放入这个组

如果可以放入,则分放与不放两次递归

注意:一定要记得单独一组的情况

如何判断是否可以放入当前组:

遍历当前组内每个数

判断这个数是否与放入数互质

如果有一个不互质

则不可放入

(判断互质用辗转相除法最好)

代码

最后附上代码

#include<bits/stdc++.h>
using namespace std;
int a[15],n,ans,cnt=0;
int f[15][15],cntf[15];
bool pd(int a,int b)
{
    int t=min(a,b);
    for(int i=2;i<=t;i++)
    {
        if(a%i==0&&b%i==0)
        {
            return true;
        }
    }
    return false;
}
void dg(int t)
{
    if(t==n)
    {
        ans=min(ans,cnt);
        
        return ;
    }
    for(int i=1;i<=cnt;i++)
    {
        int j;
        for(j=1;j<=cntf[i];j++)
        {
            if(pd(a[t+1],f[i][j]))    break;    
        }
        if(j>cntf[i])
        {
            f[i][++cntf[i]]=a[t+1];
            dg(t+1);
            cntf[i]--;
        }
    }
    cnt++;
    if(cnt>=ans) 
    {
        cnt--;
        return ;
    }
    cntf[cnt]++;
    f[cnt][cntf[cnt]]=a[t+1];
    dg(t+1);
    cntf[cnt]--;
    cnt--;
    return ;
}
int main()
{
    cin>>n;
    ans=n;
    for(int i=1;i<=n;i++)
    {
        cin>>a[i];
    }
    dg(0);
    cout<<ans;
     return 0;
}

这个问题可以使用贪心算法来解决。首先,我们可以将所有的正整数按照其质因数分解后的不同质因数个数从小到大排序。然后,对于每个正整数,我们将其放入一个已有的小中,如果该小中已有的所有数与该正整数互质,则将该正整数加入该小,否则新建一个小,并将该正整数加入其中。最终,所有的正整数都被分到了若干个小中,且任意两个数互质最小数即为小的数量。 具体实现可以使用一个哈希表来记录每个正整数的质因数分解后的不同质因数个数,然后按照这个值进行排序。对于每个正整数,我们可以使用一个数来记录其所属的小编号,初始时每个正整数都属于一个新的小。然后,对于每个正整数,我们遍历其之前的所有正整数,如果该正整数与之前的任意一个正整数互质且属于不同的小,则将两个小合并。最终,小的数量即为最小数。 代码实现如下: ```python import math def get_prime_factors(n): factors = [] while n % 2 == 0: factors.append(2) n //= 2 for i in range(3, int(math.sqrt(n))+1, 2): while n % i == 0: factors.append(i) n //= i if n > 2: factors.append(n) return set(factors) def min_groups(nums): n = len(nums) groups = list(range(n)) factors = {} for i in range(n): factors[i] = len(get_prime_factors(nums[i])) sorted_indices = sorted(range(n), key=lambda x: factors[x]) for i in range(n): for j in range(i): if math.gcd(nums[sorted_indices[i]], nums[sorted_indices[j]]) == 1: if groups[sorted_indices[i]] != groups[sorted_indices[j]]: old_group = groups[sorted_indices[i]] new_group = groups[sorted_indices[j]] for k in range(n): if groups[k] == old_group: groups[k] = new_group return len(set(groups)) # 测试 print(min_groups([2, 3, 5, 7, 11])) # 5 print(min_groups([2, 4, 6, 8, 10])) # 2 print(min_groups([2, 3, 4, 5, 6, 7, 8, 9, 10])) # 4 ``` 对于输入的正整数序列,输出为最小数。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值