计算机数学第八次

6,设p为奇素数,请证明Zp*的所有生成元都是模p的二次非剩余

证明:

设q为Zp的生成元,由p为奇素数得p的阶为p^-1;

假设

g为模p的二次剩余,

则存在

a∈Zp,

q≡ a^2(modp),q^(p-1)≡ a^(p-1)≡ 1(mod p),

与q的阶为p-1矛盾

因此

Zp*的所有生成元都是模p的二次非剩余

7,使用抽象代数的语言重新证明欧拉准则

欧拉准则:

p为奇质数且p不能整除d,则

d是模P的二次剩余,当且仅当

d^(p-1)/2≡1(modp)

d是模p的非二次剩余当且仅当

d^(p-1)/2≡-1(modp)

若用勒让德符号表示则为

d^(p-1)/2≡(d/p)(modp)

证明:

∵p为奇素数,由费马小定理得

d^(p-1)≡1(modP),

p-1为偶数,所以

(d^(p-1/2)-1)*(d^(p-1/2)+1)≡0(modp)

 p是一个素数,所以d^(p-1/2)-1 和d^(p-1/2)+1 中必有一个是 的倍数。因此模的余数必然是1或-1。

(1)证明d是模P的二次剩余,当且仅当d^(p-1)/2≡1(modp)

若d是模P的二次剩余,则存在x^2≡d(modp),p与d,x互质,根据费马小定理得

d^(p-1)/2≡x^(p-1)≡1(modp)

(2)证明若d^(p-1)/2≡1(modp),则d是模p的二次剩余

p为奇素数,p的原跟存在,则存在1<=j<=p-1,使得d=a^j

于是a^j*(p-1/2)≡1(modp)

a为p的原根,∴a模p的指数为p-1,于是p-1整除j(p-1)/2

∴j为偶数,及(a^i)^2=a^2*i=d;

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值