计算机数学第五次

这篇博客探讨了群论中的同构映射性质,证明了同构映射下的群保持其基本特性,如(1)逆映射也是同构,(2)群的阶数相等,(3)阿贝尔群的同构保持交换性,(4)循环群的同构保持循环性,(5)阶为n的子群在同构下依然存在。此外,还证明了所有无限阶的循环群都同构于群Z。
摘要由CSDN通过智能技术生成

9.1设ϕG → H 从群 G 到群 H 的一种同构映射,则以下命题为真:

(1)ϕ −1 : H → G 也是同构

ϕ −1 仍然满足群操作,∀x,y∈H ,ϕ − 1 ( x ∘ y ) = ϕ − 1 ( x ) ⋅ ϕ − 1 ( y ) ;

ϕ(ϕ−1(x∘y))=x∘y=ϕ(ϕ−1(x)⋅ϕ−1(y)) 为双射;

得证;

(2)|G| = |H|;

因为ϕ  为双射,G 与H  中的元素一一对应,所以∣ G ∣ = ∣ H ∣;

(3)如果 G 是阿贝尔群,则 H 也是阿贝尔群

∀a,b∈G;

∵G为交换群;

∴a⋅b=b⋅a ;

ϕ(a⋅b)=ϕ(a)∘ϕ(b);

ϕ(b⋅a)=ϕ(b)∘ϕ(a) ;

ϕ ( a ) ∘ ϕ ( b ) = ϕ ( b ) ∘ ϕ ( a )得证;

(4)如果 G 是循环群,则 H 也是循环群

设g 为G  的生成元;

ϕ(g^m)=ϕ(g)^m,

∵为双射

∴H为循环群

(5)如果 G 有阶为 n 的子群,则 H 也有阶为 n 的子群;

设G ′ 为G的n阶子群,

∀a,b∈G′,a^-1,b^-1,ab∈G ′;

ϕ(a),ϕ(b),ϕ(a−1),ϕ(b−1),ϕ(ab)=ϕ(a)ϕ(b);

构成H的子群,满足群公里,由(2)得证·;

命题9.2:所有无限阶的循环群都同构于群 Z

证明:

群 G 是一个无限阶的循环群,g ∈ G 是生成元;

定义 ϕ : Z → G 为 ϕ : n → g^n;

则 ϕ(m + n) = g ^(m+n) = g ^mg^n = ϕ(m)ϕ(n);

任取a , b ∈ Z  ,若ϕ ( a ) = ϕ ( b )  ,即g^a = g^b ,因为G 为无限循环群 ,所以a = b,则ϕ 单射。

任取g ^x ∈ G ,则存在x ∈ Z 使得ϕ ( x ) = g ^x 所以ϕ 是满射。
由(1)(2)可知,ϕ 是双射,得证。
 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值