Valse从2011年开始,从一开始的30多个人发展到现在的5000多人。
大模型时代的机遇和挑战 沈向洋
关于一些大模型:
画红框的是开源大模型
一些国产免费的大模型:跃问(教授重点推荐)
统一多模态理解与生成:通向AGI的必由之路
一些语言模型与多模态模型:
现有多模态框架的不足
多模态: 理解和生成统一的必然性和可能性
什么是多模理解和多模生成? 一个模型:DreamLLM
大模型将横扫所有垂直行业
不同规格的大模型,对应不同领域 不同人群 不同需求
什么是涌现智能?
以深度学习框架为牵引促进自主AI生态发展
驱动本轮人工智能发展的四驾马车 (数据 算法 算力 框架)
什么是计算图?
一个模型Subdiv Net
突破二维跟三维,是否可以用到各种数据维度?
外部注意力机制
Fitten Code编程助手

构建高效的多模态语言大模型
可控图像生成技术
具身智能
离身智能与具身智能的差异
多模态视觉融合方法是否存在性能极限?
经典深度模型
深度学习面临的挑战
视觉融合
视觉融合的应用领域
评价方法:客观与主观
视觉融合的非深度方法
代表性方法
视觉融合的深度方法
视觉融合自编码网络框架
视觉融合CNN框架
视觉融合GAN框架
混合模型框架
视觉融合扩散模型框架
视觉融合解析模型框架
视觉融合与下游任务相互促进
视觉融合与其他模态互动
结论
三维场景理解
挑战
数据集
三维场景理解--点云
有限数据标签下的突围
多模态为媒介驱动知识迁移
三维场景感知通用模型初探索
如何从2维学习方法复刻到3维
ROSEFusion: The key ideas
PhotoMaker算法流程
StoryDiffsion
LAMDA
关键问题
CSN
LAST
半监督学习
具身智能的视觉与学习
具身多模态大模型
输入 输出