【字符串匹配】KMP

2024-8-28 ·最后更新时间 2024-8-28

1 , R e c o m m e n d a t i o n \Large\mathcal{1,Recommendation} 1,Recommendation
Knuth-Morris-Pratt 字符串查找算法,简称为KMP算法,常用于在一个文本串 S 内查找另一个文本 P 的出现位置,因为时间复杂度优异而被广泛使用。

这个算法由 Donald Knuth、Vaughan Pratt、James H. Morris 三人于 1977 年联合发表,故取这 3 人的姓氏命名此算法。

2 , P r e f i x   f u n c t i o n \Large\mathcal{2,Prefix\ function} 2,Prefix function
在正式学习 KMP 算法之前我们要对前缀函数有一定的了解。
比如给你一个字符串: S = A B A D A B A S=ABADABA S=ABADABA
那么前缀后缀相同时的最长长度是多少?很显然一定 3 3 3 A B A \color{red}{ABA} ABA D D D A B A \color{red}{ABA} ABA
那么在数学中我们就会给这种形式的数值常用 π \pi π 来表示。
那么我们如果把所有 S S S 的前缀给列出来,并且对与每个前缀都求出对应的 π \pi π 那么就形成了前缀函数,如:

i i i1234567
S S S A A A A B AB AB A B A ABA ABA A B A D ABAD ABAD A B A D A ABADA ABADA A B A D A B ABADAB ABADAB A B A D A B A ABADABA ABADABA
π \pi π 0 0 0 0 0 0 1 1 1 0 0 0 1 1 1 2 2 2 3 3 3

这就是我们的前缀函数,但是…它和 KMP 有什么关系呢?

3 , K M P \Large\mathcal{3,KMP} 3,KMP
接下来我就要根据前缀函数来推演出 KMP 算法。
假设文本串 S = E A C E E A B C S=EACEEABC S=EACEEABC,模式串 P = E A B P=EAB P=EAB
考虑什么时候 P P P 可以匹配上 S S S 的字串。
我们可以这样,先用一个奇妙字符给他们衔接起来就变成了 E A B # E A C E E A B C EAB\#EACEEABC EAB#EACEEABC
然后我们就可以轻而易举地根据前缀函数得知,当且仅当 π i = l e n ( P ) \pi_i = len(P) πi=len(P) 的时候才可以匹配上。
我们可以浅浅证明一下,因为前缀函数的定义就是到了 i i i π i \pi_i πi 为前缀后缀相同时的最长长度,因为有特殊符号所以 m a x { π i } = l e n ( P ) max\{\pi_i\} = len(P) max{πi}=len(P) 所以 P P P 匹配上时, π i = l e n ( P ) \pi_i=len(P) πi=len(P)
接下来文中出现的 S 均为一般的字符串 接下来文中出现的 S 均为一般的字符串 接下来文中出现的S均为一般的字符串
那么接下来的问题就是如何求 π i \pi_i πi 了。
我们可以把字符串想象成一些点,那么就变成了:

那么如果我们现在知道 π i − 1 \pi_{i-1} πi1 的数值的话:

那么轻而易举地我们可以知道当 S π i − 1 + 1 S_{\pi_{i-1}+1} Sπi1+1 S i S_i Si 相等时 π i = π i − 1 + 1 \pi_i = \pi_{i-1}+1 πi=πi1+1,于是我们可以写出一个不完整的代码:

for(int i=1;i<=s.size();++i){
  int len=pi[i-1];
  if(s[i]==s[len]){
    pi[i]=len+1;
  }
}

BUT 不相等怎么办?那我们是不是尽量考虑次小的 π i \pi_i πi?那我们是不是又可以写出一个代码:

for(int i=1;i<=s.size();++i){
  int len=pi[i-1];
  while(s[i]!=s[len]){
    len=next_pi(i-1);
  }
  if(s[i]==s[len]){
    pi[i]=len+1;
  }
}

接下来我们就要解决 next_pi(x) 这个函数怎么求,我们可以再画一个图:

别问为什么图变了,如果我们仔细观察 π i − 1 ′ \pi^{'}_{i-1} πi1 π i − 1 \pi_{i-1} πi1 的关系我们可以发现, [ 0 , π i − 1 ′ ] [0,\pi^{'}_{i-1}] [0,πi1] 这段字符串本质上是 [ 0 , π i − 1 ] [0,\pi_{i-1}] [0πi1] 的一段后缀,又根据前缀函数可知, [ i − π i − 1 ′ , i − 1 ] [i-\pi^{'}_{i-1},i-1] [iπi1i1] 一定是与 [ 0 , π i − 1 ′ ] [0,\pi^{'}_{i-1}] [0πi1] 相等的,所以 [ 0 , π i − 1 ′ ] [0,\pi^{'}_{i-1}] [0πi1] 是等于 [ 0 , π i − 1 ] [0,\pi_{i-1}] [0πi1] 的后缀的!也就是 π i − 1 ′ \pi^{'}_{i-1} πi1 是等同于 π p i i − 1 \pi_{pi_{i-1}} πpii1 的所以我们终于可以把代码补全了qwq:

for(int i=1;i<=s.size();++i){
  int len=pi[i-1];
  while(len&&s[i]!=s[len]){
    len=pi[len-1];
  }
  if(s[i]==s[len]){
    pi[i]=len+1;
  }
}

那么,如果你完完整整的看完了这篇博客,你可能会觉得这和你印象中的 KMP 不太一样,但是如果你把到 # \# # 之前的和之后的单独拆开你会发现这就变成了你熟悉的 KMP,但这也表示着重要的一点,你需要点赞,收藏,关注我qwq。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值