四边形 ABCD,顶点坐标分别是:A(4,1)、B(7,3)、C(7,7)和 D(1,4),求 绕 P(5,4)点逆时针旋转 90 度的变换矩阵,并求出变换后的顶点坐标。

为了找到绕点 P ( 5 , 4 ) P(5, 4) P(5,4) 逆时针旋转 90 度的变换矩阵,我们首先需要找到旋转矩阵。

一个逆时针旋转 90 度的基本旋转矩阵(绕原点)是:

R = [ cos ⁡ 9 0 ∘ − sin ⁡ 9 0 ∘ sin ⁡ 9 0 ∘ cos ⁡ 9 0 ∘ ] = [ 0 − 1 1 0 ] R = \begin{bmatrix} \cos 90^\circ & -\sin 90^\circ \\ \sin 90^\circ & \cos 90^\circ \end{bmatrix} = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} R=[cos90sin90sin90cos90]=[0110]

但是,我们需要绕点 P ( 5 , 4 ) P(5, 4) P(5,4) 旋转,所以我们需要一个平移矩阵 T 1 T_1 T1 将所有点平移到原点,应用旋转矩阵 R R R,然后再用一个平移矩阵 T 2 T_2 T2 将点平移回 P ( 5 , 4 ) P(5, 4) P(5,4)

平移矩阵 T 1 T_1 T1(从 P ( 5 , 4 ) P(5, 4) P(5,4) 平移到原点)是:

T 1 = [

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值