为了找到绕点 P ( 5 , 4 ) P(5, 4) P(5,4) 逆时针旋转 90 度的变换矩阵,我们首先需要找到旋转矩阵。
一个逆时针旋转 90 度的基本旋转矩阵(绕原点)是:
R = [ cos 9 0 ∘ − sin 9 0 ∘ sin 9 0 ∘ cos 9 0 ∘ ] = [ 0 − 1 1 0 ] R = \begin{bmatrix} \cos 90^\circ & -\sin 90^\circ \\ \sin 90^\circ & \cos 90^\circ \end{bmatrix} = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} R=[cos90∘sin90∘−sin90∘cos90∘]=[01−10]
但是,我们需要绕点 P ( 5 , 4 ) P(5, 4) P(5,4) 旋转,所以我们需要一个平移矩阵 T 1 T_1 T1 将所有点平移到原点,应用旋转矩阵 R R R,然后再用一个平移矩阵 T 2 T_2 T2 将点平移回 P ( 5 , 4 ) P(5, 4) P(5,4)。
平移矩阵 T 1 T_1 T1(从 P ( 5 , 4 ) P(5, 4) P(5,4) 平移到原点)是:
T 1 = [