迷宫与陷阱
问题描述
小明在玩一款迷宫游戏,在游戏中他要控制自己的角色离开一间由 N x N 个格子组成的2D迷宫。
小明的起始位置在左上角,他需要到达右下角的格子才能离开迷宫,每一步,他可以移动到上下左右相邻的格子中。
迷宫中有些格子小明可以经过,我们用 ‘.’ 表示;有些格子是墙壁,小明不能经过,我们用 ‘#’ 表示。
此外,有些格子上有陷阱,我们用 ‘X’ 表示,除非小明处于无敌状态,否则不能经过;有些格子上有无敌道具,我们用 ‘%’ 表示。
当小明第一次到达该格子时,自动获得无敌状态,无敌状态会持续 K 步,之后如果再次到达该格子不会获得无敌状态了。
处于无敌状态时,可以经过有陷阱的格子,但是不会拆除/毁坏陷阱,即陷阱仍会阻止没有无敌状态的角色经过。
给定迷宫,请你计算小明最少经过几步可以离开迷宫?
输入格式
第一行包含两个整数 N 和 K。
以下 N 行包含一个 N x N 的矩阵(矩阵保证左上角和右下角是 ‘.’)。
输出格式
一个整数表示答案。
如果小明不能离开迷宫,输出 -1。
样例输入1
5 3
...XX
##%#.
...#.
.###.
.....
样例输出1
10
数据范围
1 ≤ N ≤ 1000
1 ≤ K ≤ 10
bfs
解题思路
在之前那题迷宫(蓝桥杯)——DFS和BFS的基础上,本题加了很多特殊的情况,逐一判断即可。
注意d
标记标记数组表示是否已该能量值到达过该点,并存储到达每个位置的最短步数。
代码
这段代码是用来解决上述迷宫游戏的问题,实现思路是通过广度优先搜索(BFS)算法。下面是代码的详细注释解释:
#include<bits/stdc++.h>
using namespace std;
struct node {
int x, y, k; // 用于存储当前节点的位置x,y以及剩余无敌步数k
};
char g[1010][1010]; // 用于存储迷宫信息
int d[1010][1010][11]; // 用于存储到达每个位置的最短步数,最后一维表示剩余无敌步数
queue<node> q; // BFS使用的队列
int dx[4]={
-1,1,0,0}; // x方向移动的四个方向:上、下
int dy[4]={
0,0,-1,1}; // y方向移动的四个方向:左、右
int n, k;