迷宫与陷阱(蓝桥杯)

迷宫与陷阱

问题描述

小明在玩一款迷宫游戏,在游戏中他要控制自己的角色离开一间由 N x N 个格子组成的2D迷宫。

小明的起始位置在左上角,他需要到达右下角的格子才能离开迷宫,每一步,他可以移动到上下左右相邻的格子中。

迷宫中有些格子小明可以经过,我们用 ‘.’ 表示;有些格子是墙壁,小明不能经过,我们用 ‘#’ 表示。

此外,有些格子上有陷阱,我们用 ‘X’ 表示,除非小明处于无敌状态,否则不能经过;有些格子上有无敌道具,我们用 ‘%’ 表示。

当小明第一次到达该格子时,自动获得无敌状态,无敌状态会持续 K 步,之后如果再次到达该格子不会获得无敌状态了。

处于无敌状态时,可以经过有陷阱的格子,但是不会拆除/毁坏陷阱,即陷阱仍会阻止没有无敌状态的角色经过。

给定迷宫,请你计算小明最少经过几步可以离开迷宫?

输入格式
第一行包含两个整数 N 和 K。
以下 N 行包含一个 N x N 的矩阵(矩阵保证左上角和右下角是 ‘.’)。

输出格式
一个整数表示答案。
如果小明不能离开迷宫,输出 -1。

样例输入1

5 3
...XX
##%#.
...#.
.###.
.....

样例输出1

10

数据范围
1 ≤ N ≤ 1000
1 ≤ K ≤ 10

bfs

解题思路

在之前那题迷宫(蓝桥杯)——DFS和BFS的基础上,本题加了很多特殊的情况,逐一判断即可。

注意d标记标记数组表示是否已该能量值到达过该点,并存储到达每个位置的最短步数。

代码

这段代码是用来解决上述迷宫游戏的问题,实现思路是通过广度优先搜索(BFS)算法。下面是代码的详细注释解释:

#include<bits/stdc++.h>
using namespace std;

struct node {
   
	int x, y, k; // 用于存储当前节点的位置x,y以及剩余无敌步数k
};

char g[1010][1010]; // 用于存储迷宫信息
int d[1010][1010][11]; // 用于存储到达每个位置的最短步数,最后一维表示剩余无敌步数
queue<node> q; // BFS使用的队列
int dx[4]={
   -1,1,0,0}; // x方向移动的四个方向:上、下
int dy[4]={
   0,0,-1,1}; // y方向移动的四个方向:左、右
int n, k; 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

命运从未公平

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值