【刷题笔记】--二分查找binarysearch

当给一个有序的数组,在其中查找某个数,可以考虑用二分查找。二分查找的核心就是不断缩小范围进行查找,这个范围就是left和right之间的范围。left<=right的=要如何理解?就是当left和right指向同一个元素的时候,这个时候我们要查找的范围就只有这一个元素。


目录

题目1: 二分查找

二分查找的思路: 

代码:

 题目2:搜索二维矩阵Ⅱ

思路: 

代码:

题目三: 搜索插入位置

思路:

代码:

题目四:P2249 【深基13.例1】查找

思路:

代码:


题目1: 

二分查找的思路: 

设置left和right指针分别指向要查找的区间。mid指针指向这个区间的中间。比较mid指针所指的数与target。

如果mid所指的数小于target,那么就可以排除mid左边的所有数,left移向mid的右边一位,改变要查找的区间。

如果mid所指的数大于target,那么就可以排除mid右边的所有数,right移向mid的左边一位,改变要查找的区间。

代码:

int search(int* nums, int numsSize, int target){
    int left=0;
    int right=numsSize-1;
    int mid=(right+left)/2;
    while(left<=right){
        if(nums[mid]<target){
            left=mid+1;
        }
        else if(nums[mid]>target){
            right=mid-1;
        }
        else{
            return mid;
        }
        mid=(right+left)/2;
    }
    return -1;
}

 题目2:

编写一个高效的算法来搜索 m x n 矩阵 matrix 中的一个目标值 target 。该矩阵具有以下特性:

每行的元素从左到右升序排列。
每列的元素从上到下升序排列。

示例 1:


输入:matrix = [[1,4,7,11,15],[2,5,8,12,19],[3,6,9,16,22],[10,13,14,17,24],[18,21,23,26,30]], target = 5
输出:true

思路: 

这个二维数组从左到右和从上到下都是有序的,这可以就可以想到用二分查找。

可以进行一行一行的二分查找即可。

代码:

bool searchMatrix(int** matrix, int matrixSize, int* matrixColSize, int target){
    int i;
    for(i=0;i<matrixSize;i++){
        int left=0;
        int right=(*matrixColSize)-1;
        while(left<=right){
            int mid=(left+right)/2;
            if(matrix[i][mid]<target){
                left=mid+1;
            }
            else if(matrix[i][mid]>target){
                right=mid-1;
            }
            else{
                return true;
            }
        }
    }
    return false;
}

题目三: 搜索插入位置

给定一个排序数组和一个目标值,在数组中找到目标值,并返回其索引。如果目标值不存在于数组中,返回它将会被按顺序插入的位置。

请必须使用时间复杂度为 O(log n) 的算法。

示例 1:

输入: nums = [1,3,5,6], target = 5
输出: 2

示例 2:

输入: nums = [1,3,5,6], target = 2
输出: 1

示例 3:

输入: nums = [1,3,5,6], target = 7
输出: 4


思路:

 看到题目给的条件是排序数组,则可以反应是用二分查找法。但这道题难点在于 如果目标值不存在于数组中,返回它将会被按顺序插入的位置。

对于这个要求我是这样想的:二分查找的循环条件是left<=right。当出了这个循环,则说明目标值不存在。

当left和right指向同一个数组元素的时候,说明这个查找区间缩小到只有这一个元素,这个时候我们就可以去判断这一个元素与target是什么关系。如果这一个元素比target小,说明我们要把target值插在这个元素的右边;如果这一个元素比target大,说明我们要把target值插在这个元素的位置。

所以我们可以把循环条件改成:left<right.出循环后,left和right一定指向同一个元素,按上面的分析去写代码即可。

代码:

int searchInsert(int* nums, int numsSize, int target){
    int left=0;
    int right=numsSize-1;
    while(left<right){
        int mid=(left+right)/2;
        if(nums[mid]>target){
            right=mid-1;
        }
        else if(nums[mid]<target){
            left=mid+1;
        }
        else{
            return mid;
        }
    }
    int mid=(left+right)/2;
    if(nums[mid]==target){
        return mid;
    }
    else if(nums[mid]<target){
        return mid+1;
    }
    else{
        return mid;
    }
}


题目四:P2249 【深基13.例1】查找

思路:

用二分 。但有个问题就是当找到了这个目标值时,要如何判断前面是否也有元素等于目标值?

我一开始的思路是:

for(i=0;i<m;i++){
		int left=0;
		int right=n-1;
		int p=0;
		while(left<=right){
			int mid=(left+right)/2;
			if(a[mid]>b[i]){
				right=mid-1;
			}
			else if(a[mid]<b[i]){
				left=mid+1;
			}
			else{
				while(a[mid]==b[i]){
					mid--;
				}
				printf("%d ",mid+2);
				p=1;
				break;
			}
		}
		if(p==0){
			printf("-1 ");
		}
	}
while(a[mid]==b[i]){
	 mid--;
}

但这样的写法会导致最后一个测试点tle。

然后我看了别人的题解,原来还有一个思路就是继续缩小范围,让right指向mid前面,然后继续二分查找看缩小的这个范围是否有目标值。 注意要记录好查找到的mid值。

代码:

#include<stdio.h>

int main(){
	int n,m;
	scanf("%d %d",&n,&m);
	int i;
	int a[n],b[m];
	for(i=0;i<n;i++){
		scanf("%d",&a[i]);
	}
	for(i=0;i<m;i++){
		scanf("%d",&b[i]);
	}
	for(i=0;i<m;i++){
		int left=0;
		int right=n-1;
		int ans=-2;
		while(left<=right){
			int mid=(left+right)/2;
			if(a[mid]>b[i]){
				right=mid-1;
			}
			else if(a[mid]<b[i]){
				left=mid+1;
			}
			else{
				right=mid-1;//一直在缩小范围,所以不会进入死循环 
				ans=mid;
			}
		}
		printf("%d ",ans+1);
	}
	return 0;
} 

 

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值