当给一个有序的数组,在其中查找某个数,可以考虑用二分查找。二分查找的核心就是不断缩小范围进行查找,这个范围就是left和right之间的范围。left<=right的=要如何理解?就是当left和right指向同一个元素的时候,这个时候我们要查找的范围就只有这一个元素。
目录
题目1: 二分查找
题目2:搜索二维矩阵Ⅱ
题目1:
二分查找的思路:
设置left和right指针分别指向要查找的区间。mid指针指向这个区间的中间。比较mid指针所指的数与target。
如果mid所指的数小于target,那么就可以排除mid左边的所有数,left移向mid的右边一位,改变要查找的区间。
如果mid所指的数大于target,那么就可以排除mid右边的所有数,right移向mid的左边一位,改变要查找的区间。
代码:
int search(int* nums, int numsSize, int target){
int left=0;
int right=numsSize-1;
int mid=(right+left)/2;
while(left<=right){
if(nums[mid]<target){
left=mid+1;
}
else if(nums[mid]>target){
right=mid-1;
}
else{
return mid;
}
mid=(right+left)/2;
}
return -1;
}
题目2:
编写一个高效的算法来搜索 m x n 矩阵 matrix 中的一个目标值 target 。该矩阵具有以下特性:
每行的元素从左到右升序排列。
每列的元素从上到下升序排列。
示例 1:
输入:matrix = [[1,4,7,11,15],[2,5,8,12,19],[3,6,9,16,22],[10,13,14,17,24],[18,21,23,26,30]], target = 5
输出:true
思路:
这个二维数组从左到右和从上到下都是有序的,这可以就可以想到用二分查找。
可以进行一行一行的二分查找即可。
代码:
bool searchMatrix(int** matrix, int matrixSize, int* matrixColSize, int target){
int i;
for(i=0;i<matrixSize;i++){
int left=0;
int right=(*matrixColSize)-1;
while(left<=right){
int mid=(left+right)/2;
if(matrix[i][mid]<target){
left=mid+1;
}
else if(matrix[i][mid]>target){
right=mid-1;
}
else{
return true;
}
}
}
return false;
}
题目三: 搜索插入位置
给定一个排序数组和一个目标值,在数组中找到目标值,并返回其索引。如果目标值不存在于数组中,返回它将会被按顺序插入的位置。
请必须使用时间复杂度为 O(log n) 的算法。
示例 1:
输入: nums = [1,3,5,6], target = 5
输出: 2
示例 2:
输入: nums = [1,3,5,6], target = 2
输出: 1
示例 3:
输入: nums = [1,3,5,6], target = 7
输出: 4
思路:
看到题目给的条件是排序数组,则可以反应是用二分查找法。但这道题难点在于 如果目标值不存在于数组中,返回它将会被按顺序插入的位置。
对于这个要求我是这样想的:二分查找的循环条件是left<=right。当出了这个循环,则说明目标值不存在。
当left和right指向同一个数组元素的时候,说明这个查找区间缩小到只有这一个元素,这个时候我们就可以去判断这一个元素与target是什么关系。如果这一个元素比target小,说明我们要把target值插在这个元素的右边;如果这一个元素比target大,说明我们要把target值插在这个元素的位置。
所以我们可以把循环条件改成:left<right.出循环后,left和right一定指向同一个元素,按上面的分析去写代码即可。
代码:
int searchInsert(int* nums, int numsSize, int target){
int left=0;
int right=numsSize-1;
while(left<right){
int mid=(left+right)/2;
if(nums[mid]>target){
right=mid-1;
}
else if(nums[mid]<target){
left=mid+1;
}
else{
return mid;
}
}
int mid=(left+right)/2;
if(nums[mid]==target){
return mid;
}
else if(nums[mid]<target){
return mid+1;
}
else{
return mid;
}
}
题目四:P2249 【深基13.例1】查找
思路:
用二分 。但有个问题就是当找到了这个目标值时,要如何判断前面是否也有元素等于目标值?
我一开始的思路是:
for(i=0;i<m;i++){
int left=0;
int right=n-1;
int p=0;
while(left<=right){
int mid=(left+right)/2;
if(a[mid]>b[i]){
right=mid-1;
}
else if(a[mid]<b[i]){
left=mid+1;
}
else{
while(a[mid]==b[i]){
mid--;
}
printf("%d ",mid+2);
p=1;
break;
}
}
if(p==0){
printf("-1 ");
}
}
while(a[mid]==b[i]){
mid--;
}
但这样的写法会导致最后一个测试点tle。
然后我看了别人的题解,原来还有一个思路就是继续缩小范围,让right指向mid前面,然后继续二分查找看缩小的这个范围是否有目标值。 注意要记录好查找到的mid值。
代码:
#include<stdio.h>
int main(){
int n,m;
scanf("%d %d",&n,&m);
int i;
int a[n],b[m];
for(i=0;i<n;i++){
scanf("%d",&a[i]);
}
for(i=0;i<m;i++){
scanf("%d",&b[i]);
}
for(i=0;i<m;i++){
int left=0;
int right=n-1;
int ans=-2;
while(left<=right){
int mid=(left+right)/2;
if(a[mid]>b[i]){
right=mid-1;
}
else if(a[mid]<b[i]){
left=mid+1;
}
else{
right=mid-1;//一直在缩小范围,所以不会进入死循环
ans=mid;
}
}
printf("%d ",ans+1);
}
return 0;
}