目录
😼🦖一.浮点数据类型
一.浮点数据类型
float double long double
注意在定义 float 类型的变量时,默认是 double 型的,在数据后面加个 f 就是float类型的了。
如图:
二. 浮点数存储规则
根据国际标准IEEE( 电器和电子工程协会 ) 754,任意一个二进制浮点数V可以表示成下面的形式:
--(-1)^ S * M * 2 ^ E
--(-1)^ S 表示符号位,当 S = 0,V 为正数;当 S = 1,V 为负数;
-- M 表示有效数字,大于等于1,小于2;
-- 2 ^ E 表示指数为。
什么意思呢?
例如 十进制的 5.5 写成科学计数法是 :5.5 x 10^0, 5.5写成二进制就是 101.1(因为 2^-1 等于0.5,加上 5 就等于 5.5),写成二进制的科学计数法即为:1.011 x 2^2。
那么按照上面的 标准,可以得出:S =0, M=1.011 , E=2;
十进制的-5.5,写成二进制是 -101.1 ,相当于 -1.011×2^2 。那么,S=1,M=1.011,E=2。
IEEE 745 规定:
1.对于32位的浮点数,最高的1位是符号位s,接着的8位是指数E,剩下的23位为有效数字M。
如图:
2.对于64位的浮点数,最高的1位是符号位S,接着的11位是指数E,剩下的52位为有效数字M。
如图:
IEEE 754对有效数字M和指数E,还有一些特别规定。
前面说过, 1≤M<2 ,也就是说,M可以写成 1.xxxxxx 的形式,其中xxxxxx表示小数部分。
IEEE 754规定,在计算机内部保存M时,默认这个数的第一位总是1,因此可以被舍去,只保存后面的 xxxxxx部分。比如保存1.01的时 候,只保存01,等到读取的时候,再把第一位的1加上去。这样做的目的,是节省1位有效数字。以32位 浮点数为例,留给M只有23位, 将第一位的1舍去以后,等于可以保存24位有效数字。
至于指数E,情况就比较复杂。
首先,E为一个无符号整数(unsigned int)
这意味着,如果E为8位,它的取值范围为0~255;
如果E为11位,它的取值范围为0~2047。但是,我们 知道,科学计数法中的E是可以出 现负数的,所以IEEE 754规定:
存入内存时E的真实值必须再加上一个中间数,对于8位的E,这个中间数 是127;对于11位的E,这个中间 数是1023。比如,2^10的E是10,所以保存成32位浮点数时,必须保存成10+127=137,即 10001001。
上面这段话是什么意思呢?
下面以32位的浮点数为例:
然后,指数E从内存中取出还可以再分成三种情况:
E不全为0或不全为1
这时,浮点数就采用下面的规则表示,即指数E的计算值减去127(或1023),得到真实值,再将 有效数字M前加上第一位的1。
比如:
0.5(1/2)的二进制形式为0.1,由于规定正数部分必须为1,即将小数点右移1位,则为 1.0*2^(-1),其阶码为-1+127=126,表示为:
01111110,而尾数1.0去掉整数部分为0,补齐0到23位00000000000000000000000,则其二进 制表示形式为:
0 01111110 00000000000000000000000
E全为0
这时,浮点数的指数E等于1-127(或者1-1023)即为真实值, 有效数字M不再加上第一位的1,而是还原为0.xxxxxx的小数。这样做是为了表示±0,以及接近于 0的很小的数字。
E全为1
这时,如果有效数字M全为0,表示±无穷大(正负取决于符号位s);
好了,关于浮点数的表示规则,就说到这里。下面看几道例题:
例1:
#include <stdio.h>
int main()
{
int a=9;
float *p=(float*)&a;
printf("a=%d\n",a);
printf("*p=%f\n",*p);
return 0;
}
上面的打印结果是什么呢?
我们来看:
a=9我们能理解,但 *p=0.000000 是为什么?
这就涉及到浮点型数据的存储与读取了
请看下图:
我们把代码改成下图所示,就能看见小数点后更多的数字:
例2:
#include <stdio.h>
int main()
{
float a=5.5f;
int *p=(int*)&a;
printf("a=%d\n",a);
printf("*p=%d\n",*p);
return 0;
}
结果:
解析:
😻😸本篇文章就到这里啦,如有错误或是建议,欢迎小伙伴们指出。😼😽
🦖🐋谢谢你的阅读。🦄🐯