[NOIP2002 普及组] 过河卒
题目描述
棋盘上 A A A 点有一个过河卒,需要走到目标 B B B 点。卒行走的规则:可以向下、或者向右。同时在棋盘上 C C C 点有一个对方的马,该马所在的点和所有跳跃一步可达的点称为对方马的控制点。因此称之为“马拦过河卒”。
棋盘用坐标表示, A A A 点 ( 0 , 0 ) (0, 0) (0,0)、 B B B 点 ( n , m ) (n, m) (n,m),同样马的位置坐标是需要给出的。
现在要求你计算出卒从 A A A 点能够到达 B B B 点的路径的条数,假设马的位置是固定不动的,并不是卒走一步马走一步。
输入格式
一行四个正整数,分别表示 B B B 点坐标和马的坐标。
输出格式
一个整数,表示所有的路径条数。
样例 #1
样例输入 #1
6 6 3 3
样例输出 #1
6
提示
对于 100 % 100 \% 100% 的数据, 1 ≤ n , m ≤ 20 1 \le n, m \le 20 1≤n,m≤20, 0 ≤ 0 \le 0≤ 马的坐标 ≤ 20 \le 20 ≤20。
【题目来源】
NOIP 2002 普及组第四题
这是一个典型的动态规划问题,可以通过动态规划来解决。下面是解决这个问题的思路:
- 定义一个二维数组
dp
,其中dp[i][j]
表示从起点 ( 0 , 0 ) (0, 0) (0,0) 到达坐标 ( i , j ) (i, j) (i,j) 的路径数量。 - 初始化数组
dp
,将起点 ( 0 , 0 ) (0, 0) (0,0) 设为 1,因为只有一种方式可以到达起点。 - 从左上角到右下角依次遍历棋盘,对于每一个位置
(
i
,
j
)
(i, j)
(i,j):
- 如果
(
i
,
j
)
(i, j)
(i,j) 是马的位置或者受马的控制,则
dp[i][j]
设为 0,因为卒无法经过该点。 - 否则,
dp[i][j] = dp[i-1][j] + dp[i][j-1]
,即可由上方或左方的点到达当前点的路径数量之和。
- 如果
(
i
,
j
)
(i, j)
(i,j) 是马的位置或者受马的控制,则
- 最终
dp[n][m]
即为结果,表示从起点到目标点的路径数量。
下面是相应的 C++ 代码:
#include <iostream>
#include <vector>
using namespace std;
int main() {
int n, m, horse_x, horse_y;
cin >> n >> m >> horse_x >> horse_y;
vector<vector<int>> dp(n + 1, vector<int>(m + 1, 0));
dp[0][0] = 1;
// 设置马的控制点
if (horse_x >= 2 && horse_y >= 1)
dp[horse_x - 2][horse_y - 1] = 1;
if (horse_x >= 1 && horse_y >= 2)
dp[horse_x - 1][horse_y - 2] = 1;
if (horse_x <= n - 2 && horse_y >= 1)
dp[horse_x + 2][horse_y - 1] = 1;
if (horse_x <= n - 1 && horse_y >= 2)
dp[horse_x + 1][horse_y - 2] = 1;
// 计算路径数量
for (int i = 0; i <= n; ++i) {
for (int j = 0; j <= m; ++j) {
if ((i == horse_x && j == horse_y) ||
(i - 1 >= 0 && j - 2 >= 0 && dp[i - 1][j - 2] == 1) ||
(i - 2 >= 0 && j - 1 >= 0 && dp[i - 2][j - 1] == 1)) {
dp[i][j] = 0; // 马的位置或受马的控制,路径数量设为 0
} else {
if (i - 1 >= 0)
dp[i][j] += dp[i - 1][j];
if (j - 1 >= 0)
dp[i][j] += dp[i][j - 1];
}
}
}
cout << dp[n][m] << endl;
return 0;
}
这段代码首先读取输入的目标点坐标和马的坐标,然后使用动态规划计算从起点到目标点的路径数量,并输出结果。